Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Risk Assessment of Agricultural Drought Disaster on the Huaibei Plain of China Based on the Improved Connection Number and Entropy Information Diffusion Method
In recent years, drought disaster has occurred frequently in China, causing significant agricultural losses. It is increasingly important to assess the risk of agricultural drought disaster (ADD) and to develop a targeted risk management approach. In this study, an ADD risk assessment model was established. First, an improved fuzzy analytic hierarchy process based on an accelerated genetic algorithm (AGA-FAHP) was used to build an evaluation indicator system. Then, based on the indicators, the ADD assessment connection numbers were established using the improved connection number method. Finally, the entropy information diffusion method was used to form an ADD risk assessment model. The model was applied to the Huaibei Plain in Anhui Province (China), with the assessment showing that, in the period from 2008 to 2017, the plain was threatened continuously by ADD, especially during 2011–2013. The risk assessment showed that southern cities of the study area were nearly twice as likely to be struck by ADD as northern cities. Meanwhile, the eastern region had a higher frequency of severe and above-grade ADD events (once every 21 years) than the western region (once every 25.3 years). Therefore, Huainan was identified as a high-risk city and Huaibei as a low-risk city, with Suzhou and Bengbu more vulnerable to ADD than Fuyang and Bozhou. Understanding the spatial dynamics of risk in the study area can improve agricultural system resilience by optimizing planting structures and by enhancing irrigation water efficiency. This model could be used to provide support for increasing agricultural drought disaster resilience and risk management efficiency.
Risk Assessment of Agricultural Drought Disaster on the Huaibei Plain of China Based on the Improved Connection Number and Entropy Information Diffusion Method
In recent years, drought disaster has occurred frequently in China, causing significant agricultural losses. It is increasingly important to assess the risk of agricultural drought disaster (ADD) and to develop a targeted risk management approach. In this study, an ADD risk assessment model was established. First, an improved fuzzy analytic hierarchy process based on an accelerated genetic algorithm (AGA-FAHP) was used to build an evaluation indicator system. Then, based on the indicators, the ADD assessment connection numbers were established using the improved connection number method. Finally, the entropy information diffusion method was used to form an ADD risk assessment model. The model was applied to the Huaibei Plain in Anhui Province (China), with the assessment showing that, in the period from 2008 to 2017, the plain was threatened continuously by ADD, especially during 2011–2013. The risk assessment showed that southern cities of the study area were nearly twice as likely to be struck by ADD as northern cities. Meanwhile, the eastern region had a higher frequency of severe and above-grade ADD events (once every 21 years) than the western region (once every 25.3 years). Therefore, Huainan was identified as a high-risk city and Huaibei as a low-risk city, with Suzhou and Bengbu more vulnerable to ADD than Fuyang and Bozhou. Understanding the spatial dynamics of risk in the study area can improve agricultural system resilience by optimizing planting structures and by enhancing irrigation water efficiency. This model could be used to provide support for increasing agricultural drought disaster resilience and risk management efficiency.
Risk Assessment of Agricultural Drought Disaster on the Huaibei Plain of China Based on the Improved Connection Number and Entropy Information Diffusion Method
Menglu Chen (Autor:in) / Shaowei Ning (Autor:in) / Juliang Jin (Autor:in) / Yi Cui (Autor:in) / Chengguo Wu (Autor:in) / Yuliang Zhou (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Rapid Urbanization Increased the Risk of Agricultural Waterlogging in the Huaibei Plain, China
DOAJ | 2023
|DOAJ | 2018
|Crop Growth Characteristics and Waterlogging Risk Analysis of Huaibei Plain in Anhui Province, China
British Library Online Contents | 2017
|