Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Computer Vision-Based Concrete Crack Identification Using MobileNetV2 Neural Network and Adaptive Thresholding
Concrete is widely used in different types of buildings and bridges; however, one of the major issues for concrete structures is crack formation and propagation during its service life. These cracks can potentially introduce harmful agents into concrete, resulting in a reduction in the overall lifespan of concrete structures. Traditional methods for crack detection primarily hinge on manual visual inspection, which relies on the experience and expertise of inspectors using tools such as magnifying glasses and microscopes. To address this issue, computer vision is one of the most innovative solutions for concrete cracking evaluation, and its application has been an area of research interest in the past few years. This study focuses on the utilization of the lightweight MobileNetV2 neural network for concrete crack detection. A dataset including 40,000 images was adopted and preprocessed using various thresholding techniques, of which adaptive thresholding was selected for developing the crack evaluation algorithm. While both the convolutional neural network (CNN) and MobileNetV2 indicated comparable accuracy levels in crack detection, the MobileNetV2 model’s significantly smaller size makes it a more efficient selection for crack detection using mobile devices. In addition, an advanced algorithm was developed to detect cracks and evaluate crack widths in high-resolution images. The effectiveness and reliability of both the selected method and the developed algorithm were subsequently assessed through experimental validation.
Computer Vision-Based Concrete Crack Identification Using MobileNetV2 Neural Network and Adaptive Thresholding
Concrete is widely used in different types of buildings and bridges; however, one of the major issues for concrete structures is crack formation and propagation during its service life. These cracks can potentially introduce harmful agents into concrete, resulting in a reduction in the overall lifespan of concrete structures. Traditional methods for crack detection primarily hinge on manual visual inspection, which relies on the experience and expertise of inspectors using tools such as magnifying glasses and microscopes. To address this issue, computer vision is one of the most innovative solutions for concrete cracking evaluation, and its application has been an area of research interest in the past few years. This study focuses on the utilization of the lightweight MobileNetV2 neural network for concrete crack detection. A dataset including 40,000 images was adopted and preprocessed using various thresholding techniques, of which adaptive thresholding was selected for developing the crack evaluation algorithm. While both the convolutional neural network (CNN) and MobileNetV2 indicated comparable accuracy levels in crack detection, the MobileNetV2 model’s significantly smaller size makes it a more efficient selection for crack detection using mobile devices. In addition, an advanced algorithm was developed to detect cracks and evaluate crack widths in high-resolution images. The effectiveness and reliability of both the selected method and the developed algorithm were subsequently assessed through experimental validation.
Computer Vision-Based Concrete Crack Identification Using MobileNetV2 Neural Network and Adaptive Thresholding
Li Hui (Autor:in) / Ahmed Ibrahim (Autor:in) / Riyadh Hindi (Autor:in)
2025
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A Rapid Identification Technique of Moving Loads Based on MobileNetV2 and Transfer Learning
DOAJ | 2023
|Machine vision-based concrete beam crack pattern identification using fractal theory
British Library Conference Proceedings | 2019
|Crack identification in concrete, using digital image correlation and neural network
Springer Verlag | 2024
|