Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Port–hinterland container logistics transportation systems (PHCLTSs) are significant to economic and social development. However, various kinds of unconventional emergency events (UEEs), such as natural or human-caused disasters, threaten PHCLTSs. This study aims to measure and improve the resilience of PHCLTSs. Bi-level programming models with two different lower level models are established to help PHCLTSs recover their capacity efficiently in the face of UEEs. In the upper level model, the government makes immediate recovery decisions about a damaged PHCLTS with the goal of improving the resilience of the PHCLTS. In the lower level models, truck carriers make decisions about transportation routes and freight volume in the recovered PHCLTS. They cooperate fully to pursue the maximization of total profit and are coordinated by a central authority, or they make their own decisions to pursue maximization of their own profit noncooperatively. An algorithm combining particle swarm optimization (PSO) and traditional optimization algorithms is proposed to solve the bi-level programming models. The numerical experimental results show the validity of the proposed models.
Port–hinterland container logistics transportation systems (PHCLTSs) are significant to economic and social development. However, various kinds of unconventional emergency events (UEEs), such as natural or human-caused disasters, threaten PHCLTSs. This study aims to measure and improve the resilience of PHCLTSs. Bi-level programming models with two different lower level models are established to help PHCLTSs recover their capacity efficiently in the face of UEEs. In the upper level model, the government makes immediate recovery decisions about a damaged PHCLTS with the goal of improving the resilience of the PHCLTS. In the lower level models, truck carriers make decisions about transportation routes and freight volume in the recovered PHCLTS. They cooperate fully to pursue the maximization of total profit and are coordinated by a central authority, or they make their own decisions to pursue maximization of their own profit noncooperatively. An algorithm combining particle swarm optimization (PSO) and traditional optimization algorithms is proposed to solve the bi-level programming models. The numerical experimental results show the validity of the proposed models.
Improving the Resilience of Port–Hinterland Container Logistics Transportation Systems: A Bi-Level Programming Approach
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Study on Hinterland Relevant to Container Port
British Library Conference Proceedings | 2012
|Research on Coordinated Development of Shenzhen Port Logistics and Hinterland Economy
DOAJ | 2023
|The dry port concept: connecting container seaports with the hinterland
Elsevier | 2008
|