Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Study on Low-Carbon Technology Innovation Strategies through Government–University–Enterprise Cooperation under Carbon Trading Policy
This paper focuses on developing low-carbon technology (LCT) innovation in traditional enterprises under carbon trading policies. The Hamilton–Jacobi–Berman equation quantitatively investigates the coordination mechanism and optimal strategy of LCT innovation systems in conventional industries. A three-way dynamic differential game model is constructed to analyze three cases: the Nash disequilibrium game; the Stackelberg master–slave game; and the cooperative game with the optimal effort of universities, traditional enterprises, and local government, the optimal benefits of the three parties, the region, and the regional LCT level. The results are as follows: (1) by changing the government subsidy factor, carbon trading price, and carbon trading tax rate, the optimal effort of universities and traditional enterprises can be significantly increased; (2) cost-sharing contracts do not change the level of effort of local government to manage the environment, and the use of cost-sharing agreements can change the status of action of universities and enterprises; (3) the optimal effort, optimal benefit, and total system benefit of the three parties and the level of LCT of the industry in the cooperative game are better than those in the non-cooperative case. The combined game achieves the Pareto optimum of the system. The study will contribute to both sustainable business development and environmental sustainability.
Study on Low-Carbon Technology Innovation Strategies through Government–University–Enterprise Cooperation under Carbon Trading Policy
This paper focuses on developing low-carbon technology (LCT) innovation in traditional enterprises under carbon trading policies. The Hamilton–Jacobi–Berman equation quantitatively investigates the coordination mechanism and optimal strategy of LCT innovation systems in conventional industries. A three-way dynamic differential game model is constructed to analyze three cases: the Nash disequilibrium game; the Stackelberg master–slave game; and the cooperative game with the optimal effort of universities, traditional enterprises, and local government, the optimal benefits of the three parties, the region, and the regional LCT level. The results are as follows: (1) by changing the government subsidy factor, carbon trading price, and carbon trading tax rate, the optimal effort of universities and traditional enterprises can be significantly increased; (2) cost-sharing contracts do not change the level of effort of local government to manage the environment, and the use of cost-sharing agreements can change the status of action of universities and enterprises; (3) the optimal effort, optimal benefit, and total system benefit of the three parties and the level of LCT of the industry in the cooperative game are better than those in the non-cooperative case. The combined game achieves the Pareto optimum of the system. The study will contribute to both sustainable business development and environmental sustainability.
Study on Low-Carbon Technology Innovation Strategies through Government–University–Enterprise Cooperation under Carbon Trading Policy
Junwu Wang (Autor:in) / Yinghui Song (Autor:in) / Mao Li (Autor:in) / Cong Yuan (Autor:in) / Feng Guo (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Impact of Carbon Trading Policy on Breakthrough Low-Carbon Technological Innovation
DOAJ | 2023
|The Impact of Carbon Emission Trading Policy on Enterprise ESG Performance: Evidence from China
DOAJ | 2023
|Projects Decision-Making for Construction Enterprise under the Carbon Tax Policy
British Library Conference Proceedings | 2015
|