Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Carbon sequestration potential of the Habanero reservoir when carbon dioxide is used as the heat exchange fluid
The use of sequestered carbon dioxide (CO2) as the heat exchange fluid in enhanced geothermal system (EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled CO2 sequestration and geothermal energy production from hot dry rock (HDR) EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and CO2 sequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential CO2 storage capacity if supercritical CO2 is used as the working fluid for heat extraction. The analysis suggests that the major CO2 sequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term CO2 sequestration capacity of EGS in which supercritical CO2 is used as the circulation fluid.
Carbon sequestration potential of the Habanero reservoir when carbon dioxide is used as the heat exchange fluid
The use of sequestered carbon dioxide (CO2) as the heat exchange fluid in enhanced geothermal system (EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled CO2 sequestration and geothermal energy production from hot dry rock (HDR) EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and CO2 sequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential CO2 storage capacity if supercritical CO2 is used as the working fluid for heat extraction. The analysis suggests that the major CO2 sequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term CO2 sequestration capacity of EGS in which supercritical CO2 is used as the circulation fluid.
Carbon sequestration potential of the Habanero reservoir when carbon dioxide is used as the heat exchange fluid
Chaoshui Xu (Autor:in) / Peter Dowd (Autor:in) / Qi Li (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Java Collaborative Technology Selections in NCSA Habanero
British Library Conference Proceedings | 1999
|Carbon dioxide sequestration through novel use of ion exchange fibers (IX-fibers)
Tema Archiv | 2011
|METHOD AND APPARATUS FOR CARBON DIOXIDE SEQUESTRATION
Europäisches Patentamt | 2023
|Carbon Dioxide Sequestration in Cementitious Construction Materials
UB Braunschweig | 2018
|