Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Structural Attributes of Old-Growth and Partially Harvested Northern White-Cedar Stands in Northeastern North America
Forestry practitioners often need to identify old-growth stands because of their high conservation value. To identify the structural and compositional characteristics potentially unique to old-growth northern white-cedar (Thuja occidentalis L.) stands, we compared 16 old-growth stands and 17 partially harvested stands in Maine, USA and New Brunswick, Canada. Potential old-growth predictors included common structural metrics such as basal area (BA), quadratic mean diameter (QMD), large tree (≥40 cm diameter at breast height) density, and volumes of coarse woody debris (CWD), along with six structural indices. Using generalized linear mixed-models, we identified two significant structural predictors that differentiate old-growth from partially harvested stands when used in combination: Volume of advanced-decay CWD and live tree QMD. None of the structural indices were useful in distinguishing between old-growth and partially harvested stands, nor did the two types differ with respect to tree species composition. Our results demonstrate that two metrics easily derived from standard inventory data—decayed CWD volume and QMD—effectively characterize the old-growth white-cedar stands sampled in this study. Taken together, these results can improve management decision making for white-cedar, particularly in the context of certification, while also shedding light on the effects of past partial harvesting on current forest structure.
Structural Attributes of Old-Growth and Partially Harvested Northern White-Cedar Stands in Northeastern North America
Forestry practitioners often need to identify old-growth stands because of their high conservation value. To identify the structural and compositional characteristics potentially unique to old-growth northern white-cedar (Thuja occidentalis L.) stands, we compared 16 old-growth stands and 17 partially harvested stands in Maine, USA and New Brunswick, Canada. Potential old-growth predictors included common structural metrics such as basal area (BA), quadratic mean diameter (QMD), large tree (≥40 cm diameter at breast height) density, and volumes of coarse woody debris (CWD), along with six structural indices. Using generalized linear mixed-models, we identified two significant structural predictors that differentiate old-growth from partially harvested stands when used in combination: Volume of advanced-decay CWD and live tree QMD. None of the structural indices were useful in distinguishing between old-growth and partially harvested stands, nor did the two types differ with respect to tree species composition. Our results demonstrate that two metrics easily derived from standard inventory data—decayed CWD volume and QMD—effectively characterize the old-growth white-cedar stands sampled in this study. Taken together, these results can improve management decision making for white-cedar, particularly in the context of certification, while also shedding light on the effects of past partial harvesting on current forest structure.
Structural Attributes of Old-Growth and Partially Harvested Northern White-Cedar Stands in Northeastern North America
Nathan Wesely (Autor:in) / Shawn Fraver (Autor:in) / Laura S. Kenefic (Autor:in) / Aaron R. Weiskittel (Autor:in) / Jean-Claude Ruel (Autor:in) / Michael E. Thompson (Autor:in) / Alan S. White (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Reconstructing Northeastern United States temperatures using Atlantic white cedar tree rings
DOAJ | 2017
|Non-pressure treatments of round northern white cedar timbers with creosote
Engineering Index Backfile | 1948
Garden Gate made of White Cedar
British Library Online Contents | 1999
|DOAJ | 2015
|