Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Behavior of Existing RC Columns Strengthened with HPFRC Jacket under Concentric and Eccentric Compressive Load
Reinforced concrete (RC) structures built before the 1970 represent a large portion of the existing European buildings stock. Their obsolescence in terms of design criteria, materials, and functionality is becoming a critical issue for guaranteeing adequate compliance with current structural codes. Recently, a new jacketing system based on the use of high-performance fiber-reinforced concrete (HPFRC) has been introduced for strengthening existing RC building members. Despite the promising aspects of the HPFRC jacketing technique, currently, a comprehensive and systematic technical framework for its implementation is still missing. In this paper, the experimental performance of RC columns strengthened with the HPFRC jacket subjected to pure axial load and combined axial load-bending moment uncoupled from shear is investigated. The test outcomes confirmed a significant improvement of the structural performance for the strengthened columns, especially for higher values of eccentricity. Finally, a standard-based practice-oriented analytical tool for designing retrofit interventions using the HPFRC jacket is proposed. The comparison between the calculated and experimental results revealed a satisfactory prediction capability.
Experimental Behavior of Existing RC Columns Strengthened with HPFRC Jacket under Concentric and Eccentric Compressive Load
Reinforced concrete (RC) structures built before the 1970 represent a large portion of the existing European buildings stock. Their obsolescence in terms of design criteria, materials, and functionality is becoming a critical issue for guaranteeing adequate compliance with current structural codes. Recently, a new jacketing system based on the use of high-performance fiber-reinforced concrete (HPFRC) has been introduced for strengthening existing RC building members. Despite the promising aspects of the HPFRC jacketing technique, currently, a comprehensive and systematic technical framework for its implementation is still missing. In this paper, the experimental performance of RC columns strengthened with the HPFRC jacket subjected to pure axial load and combined axial load-bending moment uncoupled from shear is investigated. The test outcomes confirmed a significant improvement of the structural performance for the strengthened columns, especially for higher values of eccentricity. Finally, a standard-based practice-oriented analytical tool for designing retrofit interventions using the HPFRC jacket is proposed. The comparison between the calculated and experimental results revealed a satisfactory prediction capability.
Experimental Behavior of Existing RC Columns Strengthened with HPFRC Jacket under Concentric and Eccentric Compressive Load
Paolino Cassese (Autor:in) / Costantino Menna (Autor:in) / Antonio Occhiuzzi (Autor:in) / Domenico Asprone (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Behavior of RC columns strengthened with steel jacket under static axial load
DOAJ | 2023
|Numerical cyclic behaviour of un-corroded and corroded RC columns reinforced with HPFRC jacket
British Library Online Contents | 2017
|Behavior of GFRP Strengthened Reinforced Concrete Columns under Large Eccentric Compression Load
Trans Tech Publications | 2012
|British Library Online Contents | 2013
|