Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Mapping Planted Forests in the Korean Peninsula Using Artificial Intelligence
Forests are essential for maintaining the ecological balance of the planet and providing critical ecosystem services. Amidst an increasing rate of global forest loss due to various natural and anthropogenic factors, many countries are committed to battling forest loss by planting new forests. Despite the reported national statistics on the land area in plantations, accurately delineating boundaries of planted forests with remotely sensed data remains a great challenge. In this study, we explored several deep learning approaches based on Convolutional Neural Networks (CNNs) for mapping the extent of planted forests in the Korean Peninsula. Our methodology involved data preprocessing, the application of data augmentation techniques, and rigorous model training, with performance assessed using various evaluation metrics. To ensure robust performance and accuracy, we validated the model’s predictions across the Korean Peninsula. Our analysis showed that the integration of the Near Infrared band from 10 m Sentinel-2 remote sensing images with the UNet deep learning model, incorporated with unfrozen ResNet-34 backbone architecture, produced the best model performance. With a recall of 64% and precision of 76.8%, the UNet model surpassed the other pixel-based deep learning models, including DeepLab and Pyramid Sense Parsing, in terms of classification accuracy. When compared to the ensemble-based Random Forest (RF) machine learning model, the RF approach demonstrates a significantly lower recall rate of 55.2% and greater precision of 92%. These findings highlight the unique strength of deep learning and machine learning approaches for mapping planted forests in diverse geographical regions on Earth.
Mapping Planted Forests in the Korean Peninsula Using Artificial Intelligence
Forests are essential for maintaining the ecological balance of the planet and providing critical ecosystem services. Amidst an increasing rate of global forest loss due to various natural and anthropogenic factors, many countries are committed to battling forest loss by planting new forests. Despite the reported national statistics on the land area in plantations, accurately delineating boundaries of planted forests with remotely sensed data remains a great challenge. In this study, we explored several deep learning approaches based on Convolutional Neural Networks (CNNs) for mapping the extent of planted forests in the Korean Peninsula. Our methodology involved data preprocessing, the application of data augmentation techniques, and rigorous model training, with performance assessed using various evaluation metrics. To ensure robust performance and accuracy, we validated the model’s predictions across the Korean Peninsula. Our analysis showed that the integration of the Near Infrared band from 10 m Sentinel-2 remote sensing images with the UNet deep learning model, incorporated with unfrozen ResNet-34 backbone architecture, produced the best model performance. With a recall of 64% and precision of 76.8%, the UNet model surpassed the other pixel-based deep learning models, including DeepLab and Pyramid Sense Parsing, in terms of classification accuracy. When compared to the ensemble-based Random Forest (RF) machine learning model, the RF approach demonstrates a significantly lower recall rate of 55.2% and greater precision of 92%. These findings highlight the unique strength of deep learning and machine learning approaches for mapping planted forests in diverse geographical regions on Earth.
Mapping Planted Forests in the Korean Peninsula Using Artificial Intelligence
Ankita Mitra (Autor:in) / Cesar Ivan Alvarez (Autor:in) / Akane O. Abbasi (Autor:in) / Nancy L. Harris (Autor:in) / Guofan Shao (Autor:in) / Bryan C. Pijanowski (Autor:in) / Mohammad Reza Jahanshahi (Autor:in) / Javier G. P. Gamarra (Autor:in) / Hyun-Seok Kim (Autor:in) / Tae-Kyung Kim (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Water management and productivity in planted forests
British Library Conference Proceedings | 2014
|