Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review
The biodegradable biopolymer polylactic acid (PLA) has been used in the recent past in single-use packaging as a suitable replacement for non-biodegradable fossil fuel-based plastics, such as polyethylene terephthalate (PET). Under FDA and EU regulations, lactic acid (LA), the building block of PLA, is considered safe to use as a food contact material. The mechanical, thermal, and barrier properties of PLA are, however, major challenges for this material. PLA is a brittle material with a Young’s modulus of 2996–3750 MPa and an elongation at break of 1.3–7%. PLA has a glass transition temperature (Tg) of 60 °C, exhibiting structural distortion at this temperature. The water permeability of PLA can lead to hydrolytic degradation of the material. These properties can be improved with biopolymer blending and composites. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), for instance, increases the thermal stability of PLA while decreasing the water permeability by up to 59%. Polypropylene (PP) is one of the most common plastics in reusable food containers. This study will compare PLA-based blends and composites to the currently used PP as a sustainable alternative to fossil fuel-based plastics. The end-of-life options for PLA-based food containers are considered, as is the commercial cost of replacing PP with PLA.
The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review
The biodegradable biopolymer polylactic acid (PLA) has been used in the recent past in single-use packaging as a suitable replacement for non-biodegradable fossil fuel-based plastics, such as polyethylene terephthalate (PET). Under FDA and EU regulations, lactic acid (LA), the building block of PLA, is considered safe to use as a food contact material. The mechanical, thermal, and barrier properties of PLA are, however, major challenges for this material. PLA is a brittle material with a Young’s modulus of 2996–3750 MPa and an elongation at break of 1.3–7%. PLA has a glass transition temperature (Tg) of 60 °C, exhibiting structural distortion at this temperature. The water permeability of PLA can lead to hydrolytic degradation of the material. These properties can be improved with biopolymer blending and composites. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), for instance, increases the thermal stability of PLA while decreasing the water permeability by up to 59%. Polypropylene (PP) is one of the most common plastics in reusable food containers. This study will compare PLA-based blends and composites to the currently used PP as a sustainable alternative to fossil fuel-based plastics. The end-of-life options for PLA-based food containers are considered, as is the commercial cost of replacing PP with PLA.
The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review
Jennie O’Loughlin (Autor:in) / Dylan Doherty (Autor:in) / Bevin Herward (Autor:in) / Cormac McGleenan (Autor:in) / Mehreen Mahmud (Autor:in) / Purabi Bhagabati (Autor:in) / Adam Neville Boland (Autor:in) / Brian Freeland (Autor:in) / Keith D. Rochfort (Autor:in) / Susan M. Kelleher (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Continuous Water Recycling for Reusable Plastic Containers
British Library Conference Proceedings | 2012
|Opportunities and challenges for reusable plastic containers
Online Contents | 1998
|British Library Online Contents | 2000
|