Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Spatial Disequilibrium and Dynamic Evolution of Eco-Efficiency in China’s Tea Industry
Eco-efficiency is a significant target for evaluating the agricultural ecosystem and measuring sustainable agricultural development through quantitative analysis. It is also an essential part of constructing the ecological tea garden, which offers a directional function in realizing the green development of the tea industry. After measuring the eco-efficiency of China’s tea industry using the super-efficiency SBM model, this paper analyzes the spatial disequilibrium and dynamic evolution trend of the eco-efficiency in China’s tea industry through the method of Dagum Gini Coefficient and Kernel Density Estimation. The results show that the level of eco-efficiency in China’s tea industry was improved overall, and the spatial disequilibrium was significantly reduced. The differences within the tea region decreased as follows: tea regions in Southwest China, South China, south of the Yangtze River, and north of the Yangtze River; the overall difference in the eco-efficiency in the tea industry mainly comes from the contribution of the interregional difference in tea regions, and the second contribution comes from the intraregional difference in tea regions and the difference in super-variable density. The eco-efficiency of the tea industry has been improved both nationally and within the top four tea regions; the disequilibrium between areas and within the tea region has been largely alleviated, but there is still room to optimize the input–output structure and promote the eco-efficiency.
Spatial Disequilibrium and Dynamic Evolution of Eco-Efficiency in China’s Tea Industry
Eco-efficiency is a significant target for evaluating the agricultural ecosystem and measuring sustainable agricultural development through quantitative analysis. It is also an essential part of constructing the ecological tea garden, which offers a directional function in realizing the green development of the tea industry. After measuring the eco-efficiency of China’s tea industry using the super-efficiency SBM model, this paper analyzes the spatial disequilibrium and dynamic evolution trend of the eco-efficiency in China’s tea industry through the method of Dagum Gini Coefficient and Kernel Density Estimation. The results show that the level of eco-efficiency in China’s tea industry was improved overall, and the spatial disequilibrium was significantly reduced. The differences within the tea region decreased as follows: tea regions in Southwest China, South China, south of the Yangtze River, and north of the Yangtze River; the overall difference in the eco-efficiency in the tea industry mainly comes from the contribution of the interregional difference in tea regions, and the second contribution comes from the intraregional difference in tea regions and the difference in super-variable density. The eco-efficiency of the tea industry has been improved both nationally and within the top four tea regions; the disequilibrium between areas and within the tea region has been largely alleviated, but there is still room to optimize the input–output structure and promote the eco-efficiency.
Spatial Disequilibrium and Dynamic Evolution of Eco-Efficiency in China’s Tea Industry
Wenqiang Jiang (Autor:in) / Baocai Su (Autor:in) / Shuisheng Fan (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China
DOAJ | 2022
|ESTIMATING SPATIAL MODELS WITHIN A DISEQUILIBRIUM FRAMEWORK
Online Contents | 1999
|Dynamic Evolution, Spatial Differences, and Driving Factors of China’s Provincial Digital Economy
DOAJ | 2022
|