Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Rivers under Ice: Evaluating Simulated Morphodynamics through a Riffle-Pool Sequence
Modeling in ice-covered rivers is limited due to added computational complexity, specifically challenges with the collection of field calibration data. Using River2D, a 2-dimensional hydrodynamic modeling software, this study simulates depth-averaged velocity and shear stress distributions under ice cover and in open-water conditions during varying flow conditions in a small, shallow riffle-pool sequence. The results demonstrated differences in velocity distribution throughout the channel and increases in discharge were found to impact the velocity magnitude under ice cover, while the spatial distribution remained consistent. A recirculating eddy found along the pool’s left bank was exacerbated under ice cover, with potential implications for silver shiner habitat suitability. Bed shear stress magnitude did not vary significantly between ice and open water, although the spatial distribution differed notably. Model validation demonstrated success in simulating water depth and velocities, and the shear stress was estimated within a reasonable margin. Using hydrodynamic models provides valuable insight into seasonal changes in velocities and shear stress when ice is present.
Rivers under Ice: Evaluating Simulated Morphodynamics through a Riffle-Pool Sequence
Modeling in ice-covered rivers is limited due to added computational complexity, specifically challenges with the collection of field calibration data. Using River2D, a 2-dimensional hydrodynamic modeling software, this study simulates depth-averaged velocity and shear stress distributions under ice cover and in open-water conditions during varying flow conditions in a small, shallow riffle-pool sequence. The results demonstrated differences in velocity distribution throughout the channel and increases in discharge were found to impact the velocity magnitude under ice cover, while the spatial distribution remained consistent. A recirculating eddy found along the pool’s left bank was exacerbated under ice cover, with potential implications for silver shiner habitat suitability. Bed shear stress magnitude did not vary significantly between ice and open water, although the spatial distribution differed notably. Model validation demonstrated success in simulating water depth and velocities, and the shear stress was estimated within a reasonable margin. Using hydrodynamic models provides valuable insight into seasonal changes in velocities and shear stress when ice is present.
Rivers under Ice: Evaluating Simulated Morphodynamics through a Riffle-Pool Sequence
Karine Smith (Autor:in) / Jaclyn M. H. Cockburn (Autor:in) / Paul V. Villard (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Stability of the Pool-Riffle Sequence in Changing River Channels
Online Contents | 1994
|Stability of the Pool-Riffle Sequence in Changing River Channels
British Library Online Contents | 1994
|Predicting the behaviour of pool-riffle sequences in natural rivers - A conceptual approach
British Library Conference Proceedings | 2000
|Bedload Transport Patterns in Pool-Riffle and Step-Pool Stream Systems
British Library Conference Proceedings | 1994
|