Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An Improved Statistical Damage Constitutive Model for Granite under Impact Loading
To study the impact properties of granite, the parameters (including the stress-strain curve, elasticity modulus, peak strength, and peak strain) of the test pieces in each group were determined via standard split-Hopkinson pressure bar tests. The results revealed that the prepeak stress-strain curves are approximately linear; the postpeak stress-strain curve declined sharply and exhibited the characteristics of brittle material failure after the stress exceeded the peak strength. In terms of the specimen form following failure, for increasing strain rate, the granite specimen became increasingly fragmented after failure. In addition, the single-parameter statistical damage constitutive model was improved, and a double-parameter statistical damage constitutive model for describing the total stress-strain curve of granite under the action of impact loading was proposed. The parameters of the statistical damage model, m and a, were obtained via fitting. The results revealed that the parameter m decreases with increasing elasticity modulus, whereas the parameter a increases. Similarly, the peak strength and the peak strain increased (in general) with increasing strain rate.
An Improved Statistical Damage Constitutive Model for Granite under Impact Loading
To study the impact properties of granite, the parameters (including the stress-strain curve, elasticity modulus, peak strength, and peak strain) of the test pieces in each group were determined via standard split-Hopkinson pressure bar tests. The results revealed that the prepeak stress-strain curves are approximately linear; the postpeak stress-strain curve declined sharply and exhibited the characteristics of brittle material failure after the stress exceeded the peak strength. In terms of the specimen form following failure, for increasing strain rate, the granite specimen became increasingly fragmented after failure. In addition, the single-parameter statistical damage constitutive model was improved, and a double-parameter statistical damage constitutive model for describing the total stress-strain curve of granite under the action of impact loading was proposed. The parameters of the statistical damage model, m and a, were obtained via fitting. The results revealed that the parameter m decreases with increasing elasticity modulus, whereas the parameter a increases. Similarly, the peak strength and the peak strain increased (in general) with increasing strain rate.
An Improved Statistical Damage Constitutive Model for Granite under Impact Loading
Zhenwei Zhao (Autor:in) / Bo Wu (Autor:in) / Xin Yang (Autor:in) / Zhenya Zhang (Autor:in) / Zhantao Li (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Damage constitutive model of lunar soil simulant geopolymer under impact loading
DOAJ | 2024
|Study on the Freeze-Thaw Damage of Granite Under Impact Loading
Online Contents | 2019
|Study on the Freeze-Thaw Damage of Granite Under Impact Loading
Online Contents | 2019
|