Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Water retention and transfer properties of a Green roof volcanic substrate
The water retention curve and the hydraulic conductivity function of a volcanic coarse granular material used as a substrate in an urban green roof in the Paris area was carried out on a newly developed device, in which low suctions were controlled. In the same cell, a hanging column system was used for controlling smaller suctions (up to 32 kPa) and the axis translation technique for larger suctions (up to 50 kPa). Water exchanges were monitored in connected tubes by using a high accuracy differential pressure transducer. The step changes in suction were also used to determine the hydraulic conductivity function by means of Gardner’s method, accounting for the impedance effects due to the high air entry value ceramic porous disk with Kunze and Kirkham’s method. van Genuchten and Brooks and Corey models were used for the water retention curve, but the hydraulic conductivity functions derived from these expressions appeared to lead to a significant under-estimation, confirming the need of operational and simple device for the experimental determination of the hydraulic conductivity function.
Water retention and transfer properties of a Green roof volcanic substrate
The water retention curve and the hydraulic conductivity function of a volcanic coarse granular material used as a substrate in an urban green roof in the Paris area was carried out on a newly developed device, in which low suctions were controlled. In the same cell, a hanging column system was used for controlling smaller suctions (up to 32 kPa) and the axis translation technique for larger suctions (up to 50 kPa). Water exchanges were monitored in connected tubes by using a high accuracy differential pressure transducer. The step changes in suction were also used to determine the hydraulic conductivity function by means of Gardner’s method, accounting for the impedance effects due to the high air entry value ceramic porous disk with Kunze and Kirkham’s method. van Genuchten and Brooks and Corey models were used for the water retention curve, but the hydraulic conductivity functions derived from these expressions appeared to lead to a significant under-estimation, confirming the need of operational and simple device for the experimental determination of the hydraulic conductivity function.
Water retention and transfer properties of a Green roof volcanic substrate
Stanic Filip (Autor:in) / Delage Pierre (Autor:in) / CUI Yu Jun (Autor:in) / DE LAURE Emmanuel (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Taylor & Francis Verlag | 2017
|Rainwater retention features of an extensive green roof
British Library Online Contents | 2015
|Impact of soil and water retention characteristics on green roof thermal performance
Online Contents | 2017
|