Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Stochastic User Equilibrium Model Under Traffic Rationing Based on Mode Shifting Rate
As a countermeasure to urban exhaust pollution and traffic congestion, traffic restriction based on the last digit of license plate numbers has been widely introduced throughout the world. However, the effect of traffic restriction is weakened as it causes the long-distance detour of restricted travel modes and induces travel demand to shift to unrestricted travel modes. To consider detour and shift of traffic demand caused by traffic restriction, we propose a stochastic user equilibrium model under traffic rationing based on mode shifting rate and the corresponding solution algorithm. A case study is conducted to verify the effectiveness of proposed model and algorithm. Main findings of numerical experiments include: (1) Compared with traditional stochastic user equilibrium model, the temporary traffic demand shift caused by long-distance detour are well considered in proposed model. (2) Sensitivity analysis of the consumption parameters used in the proposed model shows that, the involved cost parameters have different effectiveness on the mode shifting rate. This study provides a reasonable relaxation of the intensively used assumption, that all restricted vehicles outside the restricted district will detour in traffic rationing research, and provides a reasonable approach to evaluate the change of link flow and the beneficial effectiveness on the sustainability of traffic environment after implementation of traffic restriction policy.
A Stochastic User Equilibrium Model Under Traffic Rationing Based on Mode Shifting Rate
As a countermeasure to urban exhaust pollution and traffic congestion, traffic restriction based on the last digit of license plate numbers has been widely introduced throughout the world. However, the effect of traffic restriction is weakened as it causes the long-distance detour of restricted travel modes and induces travel demand to shift to unrestricted travel modes. To consider detour and shift of traffic demand caused by traffic restriction, we propose a stochastic user equilibrium model under traffic rationing based on mode shifting rate and the corresponding solution algorithm. A case study is conducted to verify the effectiveness of proposed model and algorithm. Main findings of numerical experiments include: (1) Compared with traditional stochastic user equilibrium model, the temporary traffic demand shift caused by long-distance detour are well considered in proposed model. (2) Sensitivity analysis of the consumption parameters used in the proposed model shows that, the involved cost parameters have different effectiveness on the mode shifting rate. This study provides a reasonable relaxation of the intensively used assumption, that all restricted vehicles outside the restricted district will detour in traffic rationing research, and provides a reasonable approach to evaluate the change of link flow and the beneficial effectiveness on the sustainability of traffic environment after implementation of traffic restriction policy.
A Stochastic User Equilibrium Model Under Traffic Rationing Based on Mode Shifting Rate
Xueyan Wei (Autor:in) / Wei Wang (Autor:in) / Weijie Yu (Autor:in) / Xuedong Hua (Autor:in) / Yun Xiang (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Traffic Rationing and Short-Term and Long-Term Equilibrium
British Library Online Contents | 2010
|Probit-Based Time-Dependent Stochastic User Equilibrium Traffic Assignment Model
British Library Online Contents | 2008
|British Library Online Contents | 2007
|British Library Conference Proceedings | 2011
|