Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modeling Vessel Behaviours by Clustering AIS Data Using Optimized DBSCAN
Today, maritime transportation represents a substantial portion of international trade. Sustainable development of marine transportation requires systematic modeling and surveillance for maritime situational awareness. In this paper, we present an enhanced density-based spatial clustering of applications with noise (DBSCAN) method to model vessel behaviours based on trajectory point data. The proposed methodology enhances the DBSCAN clustering performance by integrating the Mahalanobis distance metric, which considers the correlation between the points representing vessel locations. This research proposes applying the clustering method to historical Automatic Identification System (AIS) data using an algorithm to generate a clustering model of the vessels’ trajectories and a model for detecting vessel trajectory anomalies, such as unexpected stops, deviations from regulated routes, or inconsistent speed. Further, an automatic and data-driven approach is proposed to select the initial parameters for the enhanced DBSCAN approach. Results are presented from two case studies using an openly available Gulf of Mexico AIS dataset as well as a Saint Lawrence Seaway and Great Lakes AIS licensed dataset acquired from ORBCOMM (a maritime AIS data provider). These research findings demonstrate the applicability and scalability of the proposed method for modeling more water regions, contributing to situational awareness, vessel collision prevention, safe navigation, route planning, and detection of vessel behaviour anomalies for auto-vessel development towards the sustainability of marine transportation.
Modeling Vessel Behaviours by Clustering AIS Data Using Optimized DBSCAN
Today, maritime transportation represents a substantial portion of international trade. Sustainable development of marine transportation requires systematic modeling and surveillance for maritime situational awareness. In this paper, we present an enhanced density-based spatial clustering of applications with noise (DBSCAN) method to model vessel behaviours based on trajectory point data. The proposed methodology enhances the DBSCAN clustering performance by integrating the Mahalanobis distance metric, which considers the correlation between the points representing vessel locations. This research proposes applying the clustering method to historical Automatic Identification System (AIS) data using an algorithm to generate a clustering model of the vessels’ trajectories and a model for detecting vessel trajectory anomalies, such as unexpected stops, deviations from regulated routes, or inconsistent speed. Further, an automatic and data-driven approach is proposed to select the initial parameters for the enhanced DBSCAN approach. Results are presented from two case studies using an openly available Gulf of Mexico AIS dataset as well as a Saint Lawrence Seaway and Great Lakes AIS licensed dataset acquired from ORBCOMM (a maritime AIS data provider). These research findings demonstrate the applicability and scalability of the proposed method for modeling more water regions, contributing to situational awareness, vessel collision prevention, safe navigation, route planning, and detection of vessel behaviour anomalies for auto-vessel development towards the sustainability of marine transportation.
Modeling Vessel Behaviours by Clustering AIS Data Using Optimized DBSCAN
Xuyang Han (Autor:in) / Costas Armenakis (Autor:in) / Mojgan Jadidi (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Tree Skeletonization with DBSCAN Clustering Using Terrestrial Laser Scanning Data
DOAJ | 2023
|Automatic Extraction of Rock Discontinuities from the Point Cloud Using Dynamic DBSCAN Algorithm
DOAJ | 2022
|6D DBSCAN-based segmentation of building point clouds for planar object classification
British Library Online Contents | 2018
|