Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Reactivity of Nitrate with Zero-Valent Iron
Elevated nitrate concentrations in groundwater and surface water supplies can negatively impact the quality of the environment and human health. Recent studies have examined the use of zero-valent iron technology to treat nitrate-contaminated groundwater. Mechanistic aspects of nitrate reduction by zero-valent iron are unresolved. This project investigated the kinetics and mechanism of nitrate reduction by zero-valent iron under anoxic conditions and under oxic conditions. Stirred-batch reactions were studied over environmentally relevant ranges of reactant concentration, pH, and temperature. A complex rate expression was derived with a 1.8 order dependence on nitrate, a 1.4 order dependence on zero-valent iron, and a fractional order (0.8) dependence on proton concentrations under anoxic conditions. An apparent activation energy of 35 kJ mol−1 was observed indicating that nitrate reduction was diffusion controlled under our conditions. Furthermore, the calculated entropy of activation value of −162 J mol−1K−1 indicates that this reaction occurred by an associative mechanism. Under oxic conditions, there was a lag period in nitrate reduction where oxygen was preferentially utilized, leading to a slower rate of nitrate reduction when compared with anoxic conditions. These rate data can be used in predicting nitrate disappearance in nitrate-contaminated groundwater and wastewater treated with zero-valent iron.
Reactivity of Nitrate with Zero-Valent Iron
Elevated nitrate concentrations in groundwater and surface water supplies can negatively impact the quality of the environment and human health. Recent studies have examined the use of zero-valent iron technology to treat nitrate-contaminated groundwater. Mechanistic aspects of nitrate reduction by zero-valent iron are unresolved. This project investigated the kinetics and mechanism of nitrate reduction by zero-valent iron under anoxic conditions and under oxic conditions. Stirred-batch reactions were studied over environmentally relevant ranges of reactant concentration, pH, and temperature. A complex rate expression was derived with a 1.8 order dependence on nitrate, a 1.4 order dependence on zero-valent iron, and a fractional order (0.8) dependence on proton concentrations under anoxic conditions. An apparent activation energy of 35 kJ mol−1 was observed indicating that nitrate reduction was diffusion controlled under our conditions. Furthermore, the calculated entropy of activation value of −162 J mol−1K−1 indicates that this reaction occurred by an associative mechanism. Under oxic conditions, there was a lag period in nitrate reduction where oxygen was preferentially utilized, leading to a slower rate of nitrate reduction when compared with anoxic conditions. These rate data can be used in predicting nitrate disappearance in nitrate-contaminated groundwater and wastewater treated with zero-valent iron.
Reactivity of Nitrate with Zero-Valent Iron
Katie M. Wagner (Autor:in) / Tasios Karathanasis (Autor:in) / Christopher J. Matocha (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Reduction of trichloroethylene and nitrate by zero-valent iron with peat
Online Contents | 2008
|British Library Online Contents | 2005
|Nitrate reduction by micro-scale zero-valent iron particles under oxic condition
Online Contents | 2017
|Nitrate reduction by micro-scale zero-valent iron particles under oxic condition
Springer Verlag | 2017
|Zero-valent iron nanoparticles preparation
British Library Online Contents | 2012
|