Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Viscoelasticity of Recycled Asphalt Mixtures with High Content Reclaimed SBS Modified Asphalt Pavement
For the concerns of investigating the viscoelastic properties of recycled asphalt mixtures incorporating high content reclaimed styrene-butadiene-styrene (SBS) modified asphalt pavement (RAP-SBS), asphalt mixture performance tester (AMPT) was applied to analyze the dynamic modulus and phase angle of recycled mixtures by the influence of RAP-SBS content, temperature, loading frequency, long-term aging (LOTA), and the incorporation of a rejuvenating agent. Master curves of recycled asphalt mixture regarding dynamic modulus and phase angle are developed, and the viscoelastic properties of recycled mixtures within a wide frequency range are characterized with the Christensen–Anderson–Marastean (CAM) model. Eventually, the one-way analysis of variance (ANOVA) was applied to investigate the role of factors on the viscoelasticity of recycled mixtures. The research indicates that (1) the elastic component of recycled mixtures elevates with the increasing of RAP-SBS content and loading frequency; as a result, the high-temperature stability of it enhances, while it is prone to cracking at low temperatures; (2) RAP-SBS content should be selected according to specific characteristics of pavement. For most cases, a content of 50% is recommended; (3) the recycled mixtures incorporating high-content RAP-SBS mixed with a rejuvenating agent has outstanding aging resistance performance; (4) RAP-SBS content is observed to have a significant influence on the viscoelasticity of recycled mixtures.
Viscoelasticity of Recycled Asphalt Mixtures with High Content Reclaimed SBS Modified Asphalt Pavement
For the concerns of investigating the viscoelastic properties of recycled asphalt mixtures incorporating high content reclaimed styrene-butadiene-styrene (SBS) modified asphalt pavement (RAP-SBS), asphalt mixture performance tester (AMPT) was applied to analyze the dynamic modulus and phase angle of recycled mixtures by the influence of RAP-SBS content, temperature, loading frequency, long-term aging (LOTA), and the incorporation of a rejuvenating agent. Master curves of recycled asphalt mixture regarding dynamic modulus and phase angle are developed, and the viscoelastic properties of recycled mixtures within a wide frequency range are characterized with the Christensen–Anderson–Marastean (CAM) model. Eventually, the one-way analysis of variance (ANOVA) was applied to investigate the role of factors on the viscoelasticity of recycled mixtures. The research indicates that (1) the elastic component of recycled mixtures elevates with the increasing of RAP-SBS content and loading frequency; as a result, the high-temperature stability of it enhances, while it is prone to cracking at low temperatures; (2) RAP-SBS content should be selected according to specific characteristics of pavement. For most cases, a content of 50% is recommended; (3) the recycled mixtures incorporating high-content RAP-SBS mixed with a rejuvenating agent has outstanding aging resistance performance; (4) RAP-SBS content is observed to have a significant influence on the viscoelasticity of recycled mixtures.
Viscoelasticity of Recycled Asphalt Mixtures with High Content Reclaimed SBS Modified Asphalt Pavement
Kunpeng Zheng (Autor:in) / Jian Xu (Autor:in) / Jie Wang (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Strategies to improve performance of reclaimed asphalt pavement-recycled asphalt shingle mixtures
Taylor & Francis Verlag | 2021
|British Library Online Contents | 2011
|British Library Online Contents | 2017
|