Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China
Policy-makers have been sharing growing concerns that climate change has significant impacts on human society and economic activates. Knowledge of the influencing factors of CO2 emission is the crucial step to reduce it. In this paper, both CO2 emission and CO2 sink on a city-level of the nine cities in Wuhan Metropolitan Area are calculated using the Intergovernmental Panel on Climate Change approach. Moreover, the logarithmic mean Divisia index (LMDI) model was employed to decompose the net CO2 emission from 2001 to 2009. Results showed that (1) the largest amount of CO2 emission comes from energy while the largest amount CO2 sink comes from cropland; (2) economic level (S) was the largest positive driving factor for net CO2 emission growth in the Wuhan Metropolitan Area, population (P) also played a positive driving role, but with very weak contribution; and as negative inhibiting factors, energy structure (E) and energy efficiency (C) significantly reduced the net CO2 emission.
Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China
Policy-makers have been sharing growing concerns that climate change has significant impacts on human society and economic activates. Knowledge of the influencing factors of CO2 emission is the crucial step to reduce it. In this paper, both CO2 emission and CO2 sink on a city-level of the nine cities in Wuhan Metropolitan Area are calculated using the Intergovernmental Panel on Climate Change approach. Moreover, the logarithmic mean Divisia index (LMDI) model was employed to decompose the net CO2 emission from 2001 to 2009. Results showed that (1) the largest amount of CO2 emission comes from energy while the largest amount CO2 sink comes from cropland; (2) economic level (S) was the largest positive driving factor for net CO2 emission growth in the Wuhan Metropolitan Area, population (P) also played a positive driving role, but with very weak contribution; and as negative inhibiting factors, energy structure (E) and energy efficiency (C) significantly reduced the net CO2 emission.
Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China
Xin Yang (Autor:in) / Chunbo Ma (Autor:in) / Anlu Zhang (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Spatial—Temporal Variations of Green Space in Metropolitan Area: The Case of Wuhan, China
British Library Conference Proceedings | 2021
|Analysis on the Evolution and Resilience of Ecological Network Structure in Wuhan Metropolitan Area
DOAJ | 2022
|