Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Fractures in non-homogeneous rockfill materials from a micromechanics perspective
This study investigates particle breakage and cracks propagation of non-homogeneous rockfill materials, particularly conglomerates, from a microscale perspective. The conglomerate's materials were gathered from Masjed-E-Soleyman, MES, rockfill dam, Iran. The study of particle breakage in rockfill material has been investigated by several researchers worldwide, both in the laboratory and through numerical simulations. However, the previous research focused on homogeneous rockfill materials, not non-homogeneous ones. The first part of this research investigates crack propagation in conglomerates due to high-stress conditions in a rockfill dam. The second part of the paper evaluates the effects of crack propagation on the MES dam crest settlement. In this paper, the microstructure of conglomerates rockfill was determined by performing a set of XRD analyses. The results revealed that calcite constitutes the majority of the rockfill structure. In accordance with geology science, the calcite has a high potential for breaking, and a numerical simulation was developed to illustrate the fractures and crack propagation in a rockfill dam of 177m in height. The results of this research are useful for understanding the concept of large deformations that occurred in the MES dam and needed rehabilitation measures for preventing dam breakage.
Fractures in non-homogeneous rockfill materials from a micromechanics perspective
This study investigates particle breakage and cracks propagation of non-homogeneous rockfill materials, particularly conglomerates, from a microscale perspective. The conglomerate's materials were gathered from Masjed-E-Soleyman, MES, rockfill dam, Iran. The study of particle breakage in rockfill material has been investigated by several researchers worldwide, both in the laboratory and through numerical simulations. However, the previous research focused on homogeneous rockfill materials, not non-homogeneous ones. The first part of this research investigates crack propagation in conglomerates due to high-stress conditions in a rockfill dam. The second part of the paper evaluates the effects of crack propagation on the MES dam crest settlement. In this paper, the microstructure of conglomerates rockfill was determined by performing a set of XRD analyses. The results revealed that calcite constitutes the majority of the rockfill structure. In accordance with geology science, the calcite has a high potential for breaking, and a numerical simulation was developed to illustrate the fractures and crack propagation in a rockfill dam of 177m in height. The results of this research are useful for understanding the concept of large deformations that occurred in the MES dam and needed rehabilitation measures for preventing dam breakage.
Fractures in non-homogeneous rockfill materials from a micromechanics perspective
Saber Alidadi (Autor:in) / Rasoul Alipour (Autor:in) / Mohammadreza Shakeri (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Behaviour of Blasted Rockfill Materials
British Library Conference Proceedings | 2003
|Behavior of materials for earth and rockfill dams: Perspective from unsaturated soil mechanics
Online Contents | 2010
|Testing and Modeling Two Rockfill Materials
Online Contents | 2003
|TIBKAT | 1971
|