Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling
To assess the biogeophysical impacts of land cover/land use change (LCLUC) on surface temperature, two observation-based metrics and their applicability in climate modeling were explored in this study. Both metrics were developed based on the surface energy balance, and provided insight into the contribution of different aspects of land surface change (such as albedo, surface roughness, net radiation and surface heat fluxes) to changing climate. A revision of the first metric, the intrinsic biophysical mechanism, can be used to distinguish the direct and indirect effects of LCLUC on surface temperature. The other, a decomposed temperature metric, gives a straightforward depiction of separate contributions of all components of the surface energy balance. These two metrics well capture observed and model simulated surface temperature changes in response to LCLUC. Results from paired FLUXNET sites and land surface model sensitivity experiments indicate that surface roughness effects usually dominate the direct biogeophysical feedback of LCLUC, while other effects play a secondary role. However, coupled climate model experiments show that these direct effects can be attenuated by large scale atmospheric changes (indirect feedbacks). When applied to real-time transient LCLUC experiments, the metrics also demonstrate usefulness for assessing the performance of climate models and quantifying land–atmosphere interactions in response to LCLUC.
Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling
To assess the biogeophysical impacts of land cover/land use change (LCLUC) on surface temperature, two observation-based metrics and their applicability in climate modeling were explored in this study. Both metrics were developed based on the surface energy balance, and provided insight into the contribution of different aspects of land surface change (such as albedo, surface roughness, net radiation and surface heat fluxes) to changing climate. A revision of the first metric, the intrinsic biophysical mechanism, can be used to distinguish the direct and indirect effects of LCLUC on surface temperature. The other, a decomposed temperature metric, gives a straightforward depiction of separate contributions of all components of the surface energy balance. These two metrics well capture observed and model simulated surface temperature changes in response to LCLUC. Results from paired FLUXNET sites and land surface model sensitivity experiments indicate that surface roughness effects usually dominate the direct biogeophysical feedback of LCLUC, while other effects play a secondary role. However, coupled climate model experiments show that these direct effects can be attenuated by large scale atmospheric changes (indirect feedbacks). When applied to real-time transient LCLUC experiments, the metrics also demonstrate usefulness for assessing the performance of climate models and quantifying land–atmosphere interactions in response to LCLUC.
Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling
Liang Chen (Autor:in) / Paul A Dirmeyer (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Diagnosing atmosphere–land feedbacks in CMIP5 climate models
IOP Institute of Physics | 2012
|DOAJ | 2022
|Land-cover/land-use change dynamics modeling based on land change modeler
Online Contents | 2022
|Using landscape metrics to model land cover change
British Library Conference Proceedings | 1999
|