Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Magnitude Frequency Analysis of Small Floods Using the Annual and Partial Series
Flood frequency analysis using partial series data has been shown to provide better estimates of small to medium magnitude flood events than the annual series, but the annual series is more often employed due to its simplicity. Where partial series average recurrence intervals are required, annual series values are often “converted” to partial series values using the Langbein equation, regardless of whether the statistical assumptions behind the equation are fulfilled. This study uses data from Northern Tasmanian stream-gauging stations to make empirical comparisons between annual series and partial flood frequency estimates and values provided by the Langbein equation. At T = 1.1 years annual series estimates were found to be one third the magnitude of partial series estimates, while Langbein adjusted estimates were three quarters the magnitude of partial series estimates. The three methods converged as average recurrence interval increased until there was no significant difference between the different methods at T = 5 years. These results suggest that while the Langbein equation reduces the differences between the quantile estimates of annual maxima derived from annual maxima series and partial duration series flood frequency estimates, it does not provide a suitable alternative method to using partial series data. These results have significance for the practical estimation of the magnitude-frequency of small floods.
Magnitude Frequency Analysis of Small Floods Using the Annual and Partial Series
Flood frequency analysis using partial series data has been shown to provide better estimates of small to medium magnitude flood events than the annual series, but the annual series is more often employed due to its simplicity. Where partial series average recurrence intervals are required, annual series values are often “converted” to partial series values using the Langbein equation, regardless of whether the statistical assumptions behind the equation are fulfilled. This study uses data from Northern Tasmanian stream-gauging stations to make empirical comparisons between annual series and partial flood frequency estimates and values provided by the Langbein equation. At T = 1.1 years annual series estimates were found to be one third the magnitude of partial series estimates, while Langbein adjusted estimates were three quarters the magnitude of partial series estimates. The three methods converged as average recurrence interval increased until there was no significant difference between the different methods at T = 5 years. These results suggest that while the Langbein equation reduces the differences between the quantile estimates of annual maxima derived from annual maxima series and partial duration series flood frequency estimates, it does not provide a suitable alternative method to using partial series data. These results have significance for the practical estimation of the magnitude-frequency of small floods.
Magnitude Frequency Analysis of Small Floods Using the Annual and Partial Series
David Keast (Autor:in) / Joanna Ellison (Autor:in)
2013
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2017
|Magnitude and frequency of floods
TIBKAT | 1949
|Floods in Scotland -- Magnitude and frequency
Engineering Index Backfile | 1966
|Floods in Utah, magnitude and frequency
Engineering Index Backfile | 1962
|Floods in New York, magnitude and frequency
Engineering Index Backfile | 1961