Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder
Strength and durability characteristics of geopolymers produced using three precursors, consisting of fly ash, Ground Glass Fiber (GGF), and glass-powder were studied. Combinations of sodium hydroxide and sodium silicate were used as the activator solutions, and the effect of different sodium and silica content of the activators on the workability and compressive strength of geopolymers was investigated. The parameters used in this study were the mass ratio of Na2O-to-binder (for sodium content), and SiO2-to-Na2O of the activator (for silica content). Geopolymer mixtures that achieved the highest compressive strength from each precursor were assessed for their resistance to alkali-silica reaction and compared against the performance of portland cement mixtures. Test results revealed that GGF and fly ash-based geopolymers performed better than glass-powder-based geopolymer mixtures. The resistance of GGF-based and fly ash-based geopolymers to alkali-silica reaction was superior to that of portland cement mixtures, while glass-powder-based geopolymer showed inferior performance.
Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder
Strength and durability characteristics of geopolymers produced using three precursors, consisting of fly ash, Ground Glass Fiber (GGF), and glass-powder were studied. Combinations of sodium hydroxide and sodium silicate were used as the activator solutions, and the effect of different sodium and silica content of the activators on the workability and compressive strength of geopolymers was investigated. The parameters used in this study were the mass ratio of Na2O-to-binder (for sodium content), and SiO2-to-Na2O of the activator (for silica content). Geopolymer mixtures that achieved the highest compressive strength from each precursor were assessed for their resistance to alkali-silica reaction and compared against the performance of portland cement mixtures. Test results revealed that GGF and fly ash-based geopolymers performed better than glass-powder-based geopolymer mixtures. The resistance of GGF-based and fly ash-based geopolymers to alkali-silica reaction was superior to that of portland cement mixtures, while glass-powder-based geopolymer showed inferior performance.
Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder
H. Rashidian-Dezfouli (Autor:in) / P. R. Rangaraju (Autor:in)
2017
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2018
|British Library Online Contents | 2018
|British Library Online Contents | 2018
|Durability and Strength of Geopolymer with Recycled Glass Powder Base for Clay Stabilization
Springer Verlag | 2023
|High strength geopolymer binder based on waste-glass powder
British Library Online Contents | 2017
|