Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Multistep Extraction Transformation of Spent Coffee Grounds to the Cellulose-Based Enzyme Immobilization Carrier
The present study investigated the possibility of spent coffee ground (SCG) transformation to a cellulose-based enzyme immobilization carrier using a multistep extraction procedure. In the first step, SCGs were extracted with n-hexane by Soxhlet extraction in order to obtain SCG oil, while the remaining solid residue was subjected to continuous solvent flow sequential subcritical extraction with 96% and 50% ethanol and water. Afterwards, the obtained solid residue was subjected to alkaline liquefaction with 8% NaOH in order to remove lignin and produce cellulose-enriched SCGs as a potential enzyme immobilization carrier. Multistep extraction transformation of SCGs was monitored by chemical analysis of extracts and obtained solid residues. Soxhlet extraction of 100 g of SCGs yielded 10.58 g of SCG oil rich in linoleic and palmitic acid, while continuous solvent flow sequential subcritical extraction of 100 g of defatted SCGs yielded a total of 1.63 g of proteins, 5.58 g of sugars, 204 mg of caffeine, 76 mg of chlorogenic acid, and 11.97 mg of 5-(hydroxymethyl)furfural. Alkaline liquefaction of 100 g of sequentially extracted defatted SCGs by 8% NaOH yielded 7.45 g of proteins, 8.63 g of total polyphenols, 50.73 g of sugars, and 20.83 g of cellulose-enriched SCGs. Based on the characteristics of cellulose-enriched SCGs including a volume-weighted mean particle size of 277 μm, relative narrow particle size distribution with a span value of 1.484, water holding capacity of 7.55 mL/g, and a lack of carrier leakage, it could be safely concluded that produced cellulose-enriched SCGs fulfills criteria to be used as potential enzyme immobilization carrier. Overall, it seems that the proposed multistep extraction transformation of SCGs has great potential to be used for the production of several high-value added products.
Multistep Extraction Transformation of Spent Coffee Grounds to the Cellulose-Based Enzyme Immobilization Carrier
The present study investigated the possibility of spent coffee ground (SCG) transformation to a cellulose-based enzyme immobilization carrier using a multistep extraction procedure. In the first step, SCGs were extracted with n-hexane by Soxhlet extraction in order to obtain SCG oil, while the remaining solid residue was subjected to continuous solvent flow sequential subcritical extraction with 96% and 50% ethanol and water. Afterwards, the obtained solid residue was subjected to alkaline liquefaction with 8% NaOH in order to remove lignin and produce cellulose-enriched SCGs as a potential enzyme immobilization carrier. Multistep extraction transformation of SCGs was monitored by chemical analysis of extracts and obtained solid residues. Soxhlet extraction of 100 g of SCGs yielded 10.58 g of SCG oil rich in linoleic and palmitic acid, while continuous solvent flow sequential subcritical extraction of 100 g of defatted SCGs yielded a total of 1.63 g of proteins, 5.58 g of sugars, 204 mg of caffeine, 76 mg of chlorogenic acid, and 11.97 mg of 5-(hydroxymethyl)furfural. Alkaline liquefaction of 100 g of sequentially extracted defatted SCGs by 8% NaOH yielded 7.45 g of proteins, 8.63 g of total polyphenols, 50.73 g of sugars, and 20.83 g of cellulose-enriched SCGs. Based on the characteristics of cellulose-enriched SCGs including a volume-weighted mean particle size of 277 μm, relative narrow particle size distribution with a span value of 1.484, water holding capacity of 7.55 mL/g, and a lack of carrier leakage, it could be safely concluded that produced cellulose-enriched SCGs fulfills criteria to be used as potential enzyme immobilization carrier. Overall, it seems that the proposed multistep extraction transformation of SCGs has great potential to be used for the production of several high-value added products.
Multistep Extraction Transformation of Spent Coffee Grounds to the Cellulose-Based Enzyme Immobilization Carrier
Mirna Brekalo (Autor:in) / Blanka Bilić Rajs (Autor:in) / Krunoslav Aladić (Autor:in) / Lidija Jakobek (Autor:in) / Zita Šereš (Autor:in) / Saša Krstović (Autor:in) / Stela Jokić (Autor:in) / Sandra Budžaki (Autor:in) / Ivica Strelec (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
spent coffee grounds , Soxhlet extraction , continuous solvent flow sequential subcritical extraction , alkaline liquefaction , cellulose-based enzyme immobilization carrier , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Stiffness and deformation properties of spent coffee grounds based Geopolymers
Online Contents | 2017
|Hydrothermal Carbonization of Spent Coffee Grounds for Producing Solid Fuel
DOAJ | 2022
|Integrated Approach to Spent Coffee Grounds Valorization in Biodiesel Biorefinery
DOAJ | 2023
|