Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits
This study evaluates the efficiency of iron-based oxy-hydroxides to remove antimony from groundwater to meet the requirements of drinking water regulations. Results obtained by batch adsorption experiments indicated that the qualified iron oxy-hydroxide (FeOOH), synthesized at pH 4 for maintaining a high positive charge density (2.5 mmol OH−/g) achieved a residual concentration of Sb(III) below the EU drinking water regulation limit of 5 μg/L by providing an adsorption capacity of 3.1 mg/g. This is more than twice greater compared either to similar commercial FeOOHs (GFH, Bayoxide) or to tetravalent manganese feroxyhyte (Fe-MnOOH) adsorbents. In contrast, all tested adsorbents failed to achieve a residual concentration below 5 μg/L for Sb(V). The higher efficiency of the qualified FeOOH was confirmed by rapid small-scale column tests, since an adsorption capacity of 3 mg Sb(III)/g was determined at a breakthrough concentration of 5 μg/L. However, it completely failed to achieve Sb(V) concentrations below 5 μg/L even at the beginning of the column experiments. The results of leaching tests classified the spent qualified FeOOH to inert wastes. Considering the rapid kinetics of this process (i.e., 85% of total removal was performed within 10 min), the developed qualified adsorbent may be promoted as a prospective material for point-of-use Sb(III) removal from water in vulnerable communities, since the adsorbent’s cost was estimated to be close to 30 ± 3.4 €/103 m3 for every 10 μg Sb(III)/L removed.
Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits
This study evaluates the efficiency of iron-based oxy-hydroxides to remove antimony from groundwater to meet the requirements of drinking water regulations. Results obtained by batch adsorption experiments indicated that the qualified iron oxy-hydroxide (FeOOH), synthesized at pH 4 for maintaining a high positive charge density (2.5 mmol OH−/g) achieved a residual concentration of Sb(III) below the EU drinking water regulation limit of 5 μg/L by providing an adsorption capacity of 3.1 mg/g. This is more than twice greater compared either to similar commercial FeOOHs (GFH, Bayoxide) or to tetravalent manganese feroxyhyte (Fe-MnOOH) adsorbents. In contrast, all tested adsorbents failed to achieve a residual concentration below 5 μg/L for Sb(V). The higher efficiency of the qualified FeOOH was confirmed by rapid small-scale column tests, since an adsorption capacity of 3 mg Sb(III)/g was determined at a breakthrough concentration of 5 μg/L. However, it completely failed to achieve Sb(V) concentrations below 5 μg/L even at the beginning of the column experiments. The results of leaching tests classified the spent qualified FeOOH to inert wastes. Considering the rapid kinetics of this process (i.e., 85% of total removal was performed within 10 min), the developed qualified adsorbent may be promoted as a prospective material for point-of-use Sb(III) removal from water in vulnerable communities, since the adsorbent’s cost was estimated to be close to 30 ± 3.4 €/103 m3 for every 10 μg Sb(III)/L removed.
Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits
Konstantinos Simeonidis (Autor:in) / Vasiliki Papadopoulou (Autor:in) / Sofia Tresintsi (Autor:in) / Evgenios Kokkinos (Autor:in) / Ioannis A. Katsoyiannis (Autor:in) / Anastasios I. Zouboulis (Autor:in) / Manassis Mitrakas (Autor:in)
2017
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
The costs of small drinking water systems removing arsenic from groundwater
Online Contents | 2015
|Removing Estrogen from Drinking Water
Online Contents | 2012
Removing Arsenic From Drinking Water
Wiley | 1987
|Methods for Removing Uranium From Drinking Water
Wiley | 1988
|