Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Quality Risk Assessment of Prefabricated Steel Structural Components during Production Using Fuzzy Bayesian Networks
This study aims to address quality issues in the production of prefabricated steel structural components for buildings by investigating challenges in quality risk assessment. It identifies key factors contributing to quality problems and establishes an evaluation index system. Traditional methods encounter limitations in handling uncertainty and conducting quantitative analysis. Therefore, the fuzzy Bayesian network (FBN) theory is utilized to perform a probabilistic analysis of quality risks during the production phase. This research achieves a more accurate and dynamic risk assessment by integrating the strengths of fuzzy logic and Bayesian networks (BNs) and by utilizing expert knowledge, the similarity aggregation method (SAM), and the noisy-OR gate model. The study reveals that factors such as the “low professional level of designers”, “poor production refinement”, and “poor storage conditions for finished products” have a significant impact on quality risks. This study offers a scientific risk assessment tool designed to address the quality control challenges commonly experienced in the manufacturing of steel structural components. Identifying the critical risk factors that influence quality empowers actual production enterprises to develop risk management strategies and improvement measures in a more focused manner, thereby facilitating more effective resource allocation and risk prevention and control. Consequently, this approach has a significant impact on enhancing the overall production level and quality within the industry.
Quality Risk Assessment of Prefabricated Steel Structural Components during Production Using Fuzzy Bayesian Networks
This study aims to address quality issues in the production of prefabricated steel structural components for buildings by investigating challenges in quality risk assessment. It identifies key factors contributing to quality problems and establishes an evaluation index system. Traditional methods encounter limitations in handling uncertainty and conducting quantitative analysis. Therefore, the fuzzy Bayesian network (FBN) theory is utilized to perform a probabilistic analysis of quality risks during the production phase. This research achieves a more accurate and dynamic risk assessment by integrating the strengths of fuzzy logic and Bayesian networks (BNs) and by utilizing expert knowledge, the similarity aggregation method (SAM), and the noisy-OR gate model. The study reveals that factors such as the “low professional level of designers”, “poor production refinement”, and “poor storage conditions for finished products” have a significant impact on quality risks. This study offers a scientific risk assessment tool designed to address the quality control challenges commonly experienced in the manufacturing of steel structural components. Identifying the critical risk factors that influence quality empowers actual production enterprises to develop risk management strategies and improvement measures in a more focused manner, thereby facilitating more effective resource allocation and risk prevention and control. Consequently, this approach has a significant impact on enhancing the overall production level and quality within the industry.
Quality Risk Assessment of Prefabricated Steel Structural Components during Production Using Fuzzy Bayesian Networks
Chunling Zhong (Autor:in) / Jin Peng (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Steel framework using prefabricated structural elements
Engineering Index Backfile | 1964
|Prefabricated Building Method Using Cold-formed Steel Components
British Library Conference Proceedings | 1998
|Natural hazards risk assessment using Bayesian networks
British Library Conference Proceedings | 2005
|Housing Using Prefabricated Ferrocement Components
British Library Conference Proceedings | 1993
|