Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Numerical analysis of hydraulic fracture propagation in deep shale reservoir with different injection strategies
Deep shale reservoirs are characterized by elevated breakdown pressures, diminished fracture complexity, and reduced modified volumes compared to medium and shallow reservoirs. Therefore, it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation. In this study, the efficiency of various stimulation strategies, including multi-cluster simultaneous fracturing, modified alternating fracturing, alternating shut-in fracturing, and cyclic alternating fracturing, was evaluated. Subsequently, the sensitivity of factors such as the cycle index, shut-in time, cluster spacing, and horizontal permeability was investigated. Additionally, the flow distribution effect within the wellbore was discussed. The results indicate that relative to multi-cluster simultaneous fracturing, modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect, which results in earlier breakdown, extended hydraulic fracture lengths, and more consistent propagation despite an increase in breakdown pressure. The alternating shut-in fracturing benefits the increase of fracture length, which is closely related to the shut-in time. Furthermore, cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation, in which the cycle count plays an important role. Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing, whereas horizontal permeability is a critical factor affecting fracture length. The wellbore effect restrains the accumulation of pressure and flow near the perforation, delaying the initiation of hydraulic fractures. The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.
Numerical analysis of hydraulic fracture propagation in deep shale reservoir with different injection strategies
Deep shale reservoirs are characterized by elevated breakdown pressures, diminished fracture complexity, and reduced modified volumes compared to medium and shallow reservoirs. Therefore, it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation. In this study, the efficiency of various stimulation strategies, including multi-cluster simultaneous fracturing, modified alternating fracturing, alternating shut-in fracturing, and cyclic alternating fracturing, was evaluated. Subsequently, the sensitivity of factors such as the cycle index, shut-in time, cluster spacing, and horizontal permeability was investigated. Additionally, the flow distribution effect within the wellbore was discussed. The results indicate that relative to multi-cluster simultaneous fracturing, modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect, which results in earlier breakdown, extended hydraulic fracture lengths, and more consistent propagation despite an increase in breakdown pressure. The alternating shut-in fracturing benefits the increase of fracture length, which is closely related to the shut-in time. Furthermore, cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation, in which the cycle count plays an important role. Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing, whereas horizontal permeability is a critical factor affecting fracture length. The wellbore effect restrains the accumulation of pressure and flow near the perforation, delaying the initiation of hydraulic fractures. The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.
Numerical analysis of hydraulic fracture propagation in deep shale reservoir with different injection strategies
Yingjie Xia (Autor:in) / Mingyu Yao (Autor:in) / Tianjiao Li (Autor:in) / Hai Yang (Autor:in) / Chun'an Tang (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Elsevier | 2024
|Enhancing shale gas reservoir characterization using hydraulic fracture microseismic data
British Library Online Contents | 2012
|Numerical Investigation of Hydraulic Fracture Propagation
British Library Online Contents | 2009
|Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs
DOAJ | 2014
|