Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Tracking Sources and Fate of Groundwater Nitrate in Kisumu City and Kano Plains, Kenya
Groundwater nitrate (NO3−) pollution sources and in situ attenuation were investigated in Kisumu city and Kano plains. Samples from 62 groundwater wells consisting of shallow wells (hand dug, depth <10 m) and boreholes (machine drilled, depth >15 m) were obtained during wet (May–July 2017) and dry (February 2018) seasons and analyzed for physicochemical and isotopic (δ15N-NO3−, δ18O-NO3−, and δ11B) parameters. Groundwater NO3− concentrations ranged from <0.04 to 90.6 mg L−1. Boreholes in Ahero town showed significantly higher NO3− (20.0–70.0 mg L−1) than boreholes in the Kano plains (<10.0 mg L−1). Shallow wells in Kisumu gave significantly higher NO3− (11.4–90.6 mg L−1) than those in the Kano plains (<10.0 mg L−1). About 63% of the boreholes and 75% of the shallow wells exceeded the drinking water WHO threshold for NO3− and NO2− (nitrite) during the study period. Mean δ15N-NO3− values of 14.8‰ ± 7.0‰ and 20.7‰ ± 11.1‰, and δ18O-NO3− values of 10.2‰ ± 5.2‰ and 13.2‰ ± 6.0‰ in wet and dry seasons, respectively, indicated manure and/or sewage as main sources of groundwater NO3−. However, a concurrent enrichment of δ15N and δ18O was observed, especially in the dry season, with a corresponding NO3− decrease, indicating in situ denitrification. In addition, partial nitrification of mostly sewage derived NH4+ appeared to be responsible for increased NO2− concentrations observed in the dry season. Specifically, targeted δ11B data indicated that sewage was the main source of groundwater NO3− pollution in shallow wells within Kisumu informal settlements, boreholes in Ahero, and public institutions in populated neighborhoods of Kano; while manure was the main source of NO3− in boreholes and shallow wells in the Kano and planned estates around Kisumu. Waste-water sanitation systems in the region should be urgently improved to avoid further deterioration of groundwater sources.
Tracking Sources and Fate of Groundwater Nitrate in Kisumu City and Kano Plains, Kenya
Groundwater nitrate (NO3−) pollution sources and in situ attenuation were investigated in Kisumu city and Kano plains. Samples from 62 groundwater wells consisting of shallow wells (hand dug, depth <10 m) and boreholes (machine drilled, depth >15 m) were obtained during wet (May–July 2017) and dry (February 2018) seasons and analyzed for physicochemical and isotopic (δ15N-NO3−, δ18O-NO3−, and δ11B) parameters. Groundwater NO3− concentrations ranged from <0.04 to 90.6 mg L−1. Boreholes in Ahero town showed significantly higher NO3− (20.0–70.0 mg L−1) than boreholes in the Kano plains (<10.0 mg L−1). Shallow wells in Kisumu gave significantly higher NO3− (11.4–90.6 mg L−1) than those in the Kano plains (<10.0 mg L−1). About 63% of the boreholes and 75% of the shallow wells exceeded the drinking water WHO threshold for NO3− and NO2− (nitrite) during the study period. Mean δ15N-NO3− values of 14.8‰ ± 7.0‰ and 20.7‰ ± 11.1‰, and δ18O-NO3− values of 10.2‰ ± 5.2‰ and 13.2‰ ± 6.0‰ in wet and dry seasons, respectively, indicated manure and/or sewage as main sources of groundwater NO3−. However, a concurrent enrichment of δ15N and δ18O was observed, especially in the dry season, with a corresponding NO3− decrease, indicating in situ denitrification. In addition, partial nitrification of mostly sewage derived NH4+ appeared to be responsible for increased NO2− concentrations observed in the dry season. Specifically, targeted δ11B data indicated that sewage was the main source of groundwater NO3− pollution in shallow wells within Kisumu informal settlements, boreholes in Ahero, and public institutions in populated neighborhoods of Kano; while manure was the main source of NO3− in boreholes and shallow wells in the Kano and planned estates around Kisumu. Waste-water sanitation systems in the region should be urgently improved to avoid further deterioration of groundwater sources.
Tracking Sources and Fate of Groundwater Nitrate in Kisumu City and Kano Plains, Kenya
Benjamin Nyilitya (Autor:in) / Stephen Mureithi (Autor:in) / Pascal Boeckx (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Water Supply Crisis and Mitigation Options in Kisumu City, Kenya
Online Contents | 2007
|Impact of urban renewal changes on urban landscape identity: Case study of Kisumu City, Kenya
DOAJ | 2023
|