Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Dynamic Response Mechanism of Silt Ground under Vibration Load
The frequent vibration loads during the operation of trains can cause vibration deformation of the tunnel structure and surrounding weak strata, thereby endangering the safe operation of trains. The purpose of this paper is to study the dynamic response of surrounding soil layers caused by train vibrations through the finite difference method with FLAC3D. Based on existing research, we studied the artificially deterministic exciting force function. Then, we simulated the tunnel working conditions of a train with a 3D model, and applied the artificially deterministic exciting force function to the tunnel model. To study the vibration caused by trains in silty soil, we divided the trains into two cases, one-way and two-way. We compared the displacement–time curves of one-way and two-way trains. When the horizontal distance between the monitoring point and the vibration source increases, the peak value of the displacement–time curve decreases. As the speed of the train increases, the peak value of the displacement–time curve increases. The vertical displacement of the ground under the dynamic load of the two-way train is greater than that of the one-way train. In the acceleration–time curve, there is a lag in the ground acceleration response. The faster the speed of the subway train, the greater the peak value of the acceleration–time curve. This study can provide a guide for the evaluation and prevention of ground vibration subsidence and uneven subsidence of strata in the silt area of the Yellow River Region.
Dynamic Response Mechanism of Silt Ground under Vibration Load
The frequent vibration loads during the operation of trains can cause vibration deformation of the tunnel structure and surrounding weak strata, thereby endangering the safe operation of trains. The purpose of this paper is to study the dynamic response of surrounding soil layers caused by train vibrations through the finite difference method with FLAC3D. Based on existing research, we studied the artificially deterministic exciting force function. Then, we simulated the tunnel working conditions of a train with a 3D model, and applied the artificially deterministic exciting force function to the tunnel model. To study the vibration caused by trains in silty soil, we divided the trains into two cases, one-way and two-way. We compared the displacement–time curves of one-way and two-way trains. When the horizontal distance between the monitoring point and the vibration source increases, the peak value of the displacement–time curve decreases. As the speed of the train increases, the peak value of the displacement–time curve increases. The vertical displacement of the ground under the dynamic load of the two-way train is greater than that of the one-way train. In the acceleration–time curve, there is a lag in the ground acceleration response. The faster the speed of the subway train, the greater the peak value of the acceleration–time curve. This study can provide a guide for the evaluation and prevention of ground vibration subsidence and uneven subsidence of strata in the silt area of the Yellow River Region.
Dynamic Response Mechanism of Silt Ground under Vibration Load
Zhanfei Gu (Autor:in) / Hailong Wei (Autor:in) / Zhikui Liu (Autor:in) / Mingfei Zhang (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Mechanism of liquefaction response in sand-silt dynamic centrifuge tests
Online Contents | 1999
|Mechanism of liquefaction response in sand-silt dynamic centrifuge tests
British Library Online Contents | 1999
|Stochastic Dynamic Reliability Analysis of Seismic Response of Soft Ground Including Silt
British Library Conference Proceedings | 2013
|Seismic Response Of A Sandy Stratum With A Silt Layer Under Strong Ground Motions
BASE | 2013
|