Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Photosynthetic Characteristics of Macroalgae Ulva fasciata and Sargassum thunbergii in the Daya Bay of the South China Sea, with Special Reference to the Effects of Light Quality
The changes in underwater light in field usually occur not only in intensity but in spectrum, affecting the photophysiology of marine photoautotrophs. In this study, we comparably examined the photosynthesis of two dominating macroalgae in the Daya Bay, Chlorophyta Ulva fasciata and Phaeophyta Sargassum thunbergii, under white light, as well as under red, green and blue light. The results showed that the net photosynthetic O2 evolution rate (Pn) of U. fasciata under field light increased from 25.2 ± 3.06 to 168 ± 1.2 µmol O2 g FW−1 h−1 from dawn to noon, then decreased to 42.4 ± 0.20 µmol O2 g FW−1 h−1 at dusk. The Pn of S. thunbergii exhibited a similar diel change pattern, but was over 50% lower than that of U. fasciata. The maximal photosynthetic rate (Pmax) of U. fasciata derived from the photosynthesis vs. irradiance curve under white light (i.e., 148 ± 15.8 µmol O2 g FW−1 h−1) was ~30% higher than that under blue light, while the Pmax of S. thunbergii under white light (i.e., 39.2 ± 3.44 µmol O2 g FW−1 h−1) was over 50% lower than that under red, green and blue light. Furthermore, the daily primary production (PP) of U. fasciata was ~20% higher under white than blue light, while that of S. thunbergii was 34% lower, indicating the varied light spectral compositions influence algal photosynthetic ability and thus their primary production in field, and such an influence is species-specific.
Photosynthetic Characteristics of Macroalgae Ulva fasciata and Sargassum thunbergii in the Daya Bay of the South China Sea, with Special Reference to the Effects of Light Quality
The changes in underwater light in field usually occur not only in intensity but in spectrum, affecting the photophysiology of marine photoautotrophs. In this study, we comparably examined the photosynthesis of two dominating macroalgae in the Daya Bay, Chlorophyta Ulva fasciata and Phaeophyta Sargassum thunbergii, under white light, as well as under red, green and blue light. The results showed that the net photosynthetic O2 evolution rate (Pn) of U. fasciata under field light increased from 25.2 ± 3.06 to 168 ± 1.2 µmol O2 g FW−1 h−1 from dawn to noon, then decreased to 42.4 ± 0.20 µmol O2 g FW−1 h−1 at dusk. The Pn of S. thunbergii exhibited a similar diel change pattern, but was over 50% lower than that of U. fasciata. The maximal photosynthetic rate (Pmax) of U. fasciata derived from the photosynthesis vs. irradiance curve under white light (i.e., 148 ± 15.8 µmol O2 g FW−1 h−1) was ~30% higher than that under blue light, while the Pmax of S. thunbergii under white light (i.e., 39.2 ± 3.44 µmol O2 g FW−1 h−1) was over 50% lower than that under red, green and blue light. Furthermore, the daily primary production (PP) of U. fasciata was ~20% higher under white than blue light, while that of S. thunbergii was 34% lower, indicating the varied light spectral compositions influence algal photosynthetic ability and thus their primary production in field, and such an influence is species-specific.
Photosynthetic Characteristics of Macroalgae Ulva fasciata and Sargassum thunbergii in the Daya Bay of the South China Sea, with Special Reference to the Effects of Light Quality
Mingyue Wan (Autor:in) / Zhiqin Wang (Autor:in) / Guangming Mai (Autor:in) / Zengling Ma (Autor:in) / Xiaomin Xia (Autor:in) / Yehui Tan (Autor:in) / Gang Li (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Detrimental effects on coastal concrete by Ulva fasciata
Online Contents | 2010
|Antiviral and Antifungal of Ulva fasciata Extract: HPLC Analysis of Polyphenolic Compounds
DOAJ | 2022
|Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae
Online Contents | 2015
|Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea
Online Contents | 2017
|