Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evidence for the Widespread Occurrence of Bacteria Implicated in Acute Oak Decline from Incidental Genetic Sampling
Acute Oak Decline (AOD) is complex syndrome affecting Britain’s keystone native oak species, (Quercus robur L. and Q. petraea L. (Matt.) Liebl.), in some cases causing mortality within five years of symptom development. The most distinguishable symptom is weeping stem lesions, from which four species of bacteria have been isolated: Brenneria goodwinii, Gibbsiella quercinecans, Lonsdalea britannica and Rahnella victoriana. We do not yet know where else these bacteria exist, and little is known about the relationship of the wider oak leaf microbiome (phyllosphere) to acute oak decline. Here we investigate whether incidental evidence from a large oak genome re-sequencing dataset could be used to detect these bacteria in oak foliage, and whether bacterial incidence co-varied with AOD status or location. Oak leaves and buds were sampled from 421 trees at five sites in England. Whole genomic DNA from these samples was shot-gun sequenced with short reads. Non-oak reads were extracted from these data and queried to microbial databases. Reads uniquely matching AOD-associated bacterial genomes were found to be present on trees from all five sites and included trees with active lesions, trees with historic lesions and trees without AOD symptoms. The abundance of the AOD-associated bacteria did not differ between tree health categories but did differ among sites. We conclude that the AOD-associated bacteria may be members of the normal oak microbiome, whose presence on a tree is not sufficient to cause AOD symptoms.
Evidence for the Widespread Occurrence of Bacteria Implicated in Acute Oak Decline from Incidental Genetic Sampling
Acute Oak Decline (AOD) is complex syndrome affecting Britain’s keystone native oak species, (Quercus robur L. and Q. petraea L. (Matt.) Liebl.), in some cases causing mortality within five years of symptom development. The most distinguishable symptom is weeping stem lesions, from which four species of bacteria have been isolated: Brenneria goodwinii, Gibbsiella quercinecans, Lonsdalea britannica and Rahnella victoriana. We do not yet know where else these bacteria exist, and little is known about the relationship of the wider oak leaf microbiome (phyllosphere) to acute oak decline. Here we investigate whether incidental evidence from a large oak genome re-sequencing dataset could be used to detect these bacteria in oak foliage, and whether bacterial incidence co-varied with AOD status or location. Oak leaves and buds were sampled from 421 trees at five sites in England. Whole genomic DNA from these samples was shot-gun sequenced with short reads. Non-oak reads were extracted from these data and queried to microbial databases. Reads uniquely matching AOD-associated bacterial genomes were found to be present on trees from all five sites and included trees with active lesions, trees with historic lesions and trees without AOD symptoms. The abundance of the AOD-associated bacteria did not differ between tree health categories but did differ among sites. We conclude that the AOD-associated bacteria may be members of the normal oak microbiome, whose presence on a tree is not sufficient to cause AOD symptoms.
Evidence for the Widespread Occurrence of Bacteria Implicated in Acute Oak Decline from Incidental Genetic Sampling
Louise A. P. Gathercole (Autor:in) / Gabriele Nocchi (Autor:in) / Nathan Brown (Autor:in) / Timothy L. R. Coker (Autor:in) / William J. Plumb (Autor:in) / Jonathan J. Stocks (Autor:in) / Richard A. Nichols (Autor:in) / Sandra Denman (Autor:in) / Richard J. A. Buggs (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Widespread Occurrence of Noctilucent Clouds
Online Contents | 2000
|British Library Conference Proceedings | 1994
|Metabarcoding of Bacteria Associated with the Acute Oak Decline Syndrome in England
DOAJ | 2016
|DOAJ | 2020
|Widespread occurrence of microplastics in marine bays with diverse drivers and environmental risk
DOAJ | 2022
|