Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm
This paper introduces an effective and reliable approach based on a multi-population approach, namely the self-adaptive multi-population Jaya algorithm (SAMP-JA), to extract multi-purpose reservoir operation policies. The current research focused on two goals: minimizing irrigation deficits and maximizing hydropower generation. Three different models were formulated. The results were compared with those for an ordinary Jaya algorithm (JA), particle swarm optimization (PSO), and an invasive weed optimization (IWO) algorithm. In Model-1, the minimum irrigation deficit obtained by SAMP-JA and JA was 305092.99 . SAMP-JA was better than JA, PSO and IWO in terms of convergence. In Model-2, the maximum hydropower generation achieved by SAMP-JA, JA and PSO was 1723.50 . When comparing the average hydropower generation, SAMP-JA and PSO performed better than JA and IWO. In terms of convergence, SAMP-JA was better than PSO. In Model-3, a self-adaptive multi-population multi-objective Jaya algorithm (SAMP-MOJA) was better than multi-objective particle swarm optimization (MOPSO) and multi-objective Jaya algorithm (MOJA) in terms of maximum hydropower generation, and MOPSO was better than SAMP-MOJA and MOJA in terms of minimum irrigation deficiency. While comparing convergence, SAMP-MOJA was found to be better than MOPSO and MOJA. Overall, SAMP-JA was found to outperform JA, POS and IWO. HIGHLIGHTS Advanced optimization algorithm free from internal parameters.; Introduces an effective and reliable approach based on a multi-population approach.; An improved Jaya algorithm was used for single and multi-objective optimization models for reservoir operation.; Both hydropower benefits and irrigation deficiencies are considered.; Proposed algorithms can generate greater hydropower with lower inflow than the actual inflow.;
Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm
This paper introduces an effective and reliable approach based on a multi-population approach, namely the self-adaptive multi-population Jaya algorithm (SAMP-JA), to extract multi-purpose reservoir operation policies. The current research focused on two goals: minimizing irrigation deficits and maximizing hydropower generation. Three different models were formulated. The results were compared with those for an ordinary Jaya algorithm (JA), particle swarm optimization (PSO), and an invasive weed optimization (IWO) algorithm. In Model-1, the minimum irrigation deficit obtained by SAMP-JA and JA was 305092.99 . SAMP-JA was better than JA, PSO and IWO in terms of convergence. In Model-2, the maximum hydropower generation achieved by SAMP-JA, JA and PSO was 1723.50 . When comparing the average hydropower generation, SAMP-JA and PSO performed better than JA and IWO. In terms of convergence, SAMP-JA was better than PSO. In Model-3, a self-adaptive multi-population multi-objective Jaya algorithm (SAMP-MOJA) was better than multi-objective particle swarm optimization (MOPSO) and multi-objective Jaya algorithm (MOJA) in terms of maximum hydropower generation, and MOPSO was better than SAMP-MOJA and MOJA in terms of minimum irrigation deficiency. While comparing convergence, SAMP-MOJA was found to be better than MOPSO and MOJA. Overall, SAMP-JA was found to outperform JA, POS and IWO. HIGHLIGHTS Advanced optimization algorithm free from internal parameters.; Introduces an effective and reliable approach based on a multi-population approach.; An improved Jaya algorithm was used for single and multi-objective optimization models for reservoir operation.; Both hydropower benefits and irrigation deficiencies are considered.; Proposed algorithms can generate greater hydropower with lower inflow than the actual inflow.;
Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm
Vijendra Kumar (Autor:in) / S. M. Yadav (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Taylor & Francis Verlag | 2016
|Multi-Objective Optimization of Folsom Reservoir Operation
British Library Conference Proceedings | 2006
|Development of an integrated modeling system for improved multi-objective reservoir operation
Online Contents | 2009
|Improved multi-objective Jaya optimization algorithm for a solar dish Stirling engine
American Institute of Physics | 2019
|