Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables
This is a primary investigation on the mitigation of polycyclic aromatic hydrocarbon (phenanthrene as a model PAH) contamination in vegetables including water spinach (Ipomoea aquatica Forsk), pakchoi (Brassica campestris) and Chinese cabbage (Brassica chinensis) using a gfp-labeled PAH-degrading bacterium (RS1-gfp). Effective root colonization led to dense RS1-gfp populations inhabiting the rhizosphere and endosphere of the vegetables, which subsequently led to a reduction in phenanthrene accumulation and risk in vegetables. When compared with the controls without RS1-gfp, the amount of phenanthrene accumulation due to strain RS1-gfp colonization reduced by up to ~93.7% in roots and ~75.2% in shoots of vegetables, respectively. The estimated incremental lifetime cancer risk (ILCR) for adults due to phenanthrene in vegetables was reduced by 24.6%–48% through RS1-gfp inoculation. The proposed method was developed to circumvent the risk of phenanthrene contamination in vegetables by inoculating PAH-degrading bacteria. The findings provide an in-depth understanding of PAH detoxification in agricultural plants grown on contaminated sites by exploiting bacteria like RS1-gfp, which portray both rhizo- and endophytic lifestyles. Keywords: Bacteria, Vegetable, Phenanthrene, Degradation, Health risk, Colonization
Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables
This is a primary investigation on the mitigation of polycyclic aromatic hydrocarbon (phenanthrene as a model PAH) contamination in vegetables including water spinach (Ipomoea aquatica Forsk), pakchoi (Brassica campestris) and Chinese cabbage (Brassica chinensis) using a gfp-labeled PAH-degrading bacterium (RS1-gfp). Effective root colonization led to dense RS1-gfp populations inhabiting the rhizosphere and endosphere of the vegetables, which subsequently led to a reduction in phenanthrene accumulation and risk in vegetables. When compared with the controls without RS1-gfp, the amount of phenanthrene accumulation due to strain RS1-gfp colonization reduced by up to ~93.7% in roots and ~75.2% in shoots of vegetables, respectively. The estimated incremental lifetime cancer risk (ILCR) for adults due to phenanthrene in vegetables was reduced by 24.6%–48% through RS1-gfp inoculation. The proposed method was developed to circumvent the risk of phenanthrene contamination in vegetables by inoculating PAH-degrading bacteria. The findings provide an in-depth understanding of PAH detoxification in agricultural plants grown on contaminated sites by exploiting bacteria like RS1-gfp, which portray both rhizo- and endophytic lifestyles. Keywords: Bacteria, Vegetable, Phenanthrene, Degradation, Health risk, Colonization
Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables
Shuang Chen (Autor:in) / Zhao Ma (Autor:in) / Shunyao Li (Autor:in) / Michael Gatheru Waigi (Autor:in) / Jiandong Jiang (Autor:in) / Juan Liu (Autor:in) / Wanting Ling (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Polycyclic aromatic hydrocarbon-degrading bacteria in building stones
British Library Conference Proceedings | 1996
|