Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Seismic Behavior Evaluation of Concrete Elevated Water Tanks
Elevated tanks are important structures in storing vital products, such as petroleum products for cities and industrial facilities, as well as water storage. These structures have various types and are constructed in a way that a greater portion of their weight is concentrated at an elevation much about the base. Damage to these structures during strong ground motions may lead to fire or other hazardous events. In this research, a reinforced concrete elevated water tank, with 900 cubic meters capacity, exposed to three pairs of earthquake records was analyzed in time history using mechanical and finite-element modeling techniques. The liquid mass of the tank was modeled as lumped mass known as sloshing mass, or impulsive mass. The corresponding stiffness constants associated with the lumped mass were determined depending upon the properties of the tank wall and liquid mass. Tank responses including base shear, overturning moment, tank displacement, and sloshing displacement were also calculated. Obtained results revealed that the system responses are highly influenced by the structural parameters and the earthquake characteristics such as frequency content.
Seismic Behavior Evaluation of Concrete Elevated Water Tanks
Elevated tanks are important structures in storing vital products, such as petroleum products for cities and industrial facilities, as well as water storage. These structures have various types and are constructed in a way that a greater portion of their weight is concentrated at an elevation much about the base. Damage to these structures during strong ground motions may lead to fire or other hazardous events. In this research, a reinforced concrete elevated water tank, with 900 cubic meters capacity, exposed to three pairs of earthquake records was analyzed in time history using mechanical and finite-element modeling techniques. The liquid mass of the tank was modeled as lumped mass known as sloshing mass, or impulsive mass. The corresponding stiffness constants associated with the lumped mass were determined depending upon the properties of the tank wall and liquid mass. Tank responses including base shear, overturning moment, tank displacement, and sloshing displacement were also calculated. Obtained results revealed that the system responses are highly influenced by the structural parameters and the earthquake characteristics such as frequency content.
Seismic Behavior Evaluation of Concrete Elevated Water Tanks
Saeed Bozorgmehrnia (Autor:in) / Malek Mohammad Ranjbar (Autor:in) / Rahmat Madandoust (Autor:in)
2013
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Evaluation of Seismic Performance Factors for Elevated Reinforced Concrete Tanks
British Library Conference Proceedings | 2012
|Fragility analysis of concrete elevated water tanks under seismic loads
BASE | 2021
|Fragility analysis of concrete elevated water tanks under seismic loads
BASE | 2021
|Reinforced concrete elevated water tanks
Engineering Index Backfile | 1923
|Seismic response factors of reinforced concrete pedestal in elevated water tanks
Online Contents | 2015
|