Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Phosphorus Sorption in Soils and Clay Fractions Developed from Different Parent Rocks in Limpopo Province, South Africa
Phosphorus (P) sorption dynamics in soils have implications for the environment and soil fertility. Soils and clay fractions that were developed from basalt, granite, arkosic sandstone, and gneiss in Limpopo Province, South Africa were analysed for their P adsorption characteristics and external phosphorus requirements (EPR). The relationship between the P adsorption parameters and EPR of the soils and clay fractions were also assessed. The Langmuir adsorption isotherms for the soils and clay fractions gave a better fit with slightly higher R-square values relative to the Freundlich adsorption isotherms. The Langmuir P sorption maxima were between 285.71 and 833.33 mg/kg and 238.09 and 625.0 mg/kg for the soils and clay fractions, respectively, and the EPR values ranged from 7.78 to 92.91 mgP/kg and 5.13 to 65.85 mgP/kg for the soils and clay fractions, respectively. The variations in the EPR suggest a single, uniform P fertiliser application to the soils could cause under-fertilisation and over-fertilisation problems. The soils that were developed from basalt, relative to the others, showed no risk to the water quality in the region at the current rate of P fertiliser application. The P sorption parameters of the soils and clay fractions showed no statistically significant differences. Hence, the P sorption parameters of the clay fractions could be reliable predictors of the P sorption and buffering in their respective soils.
Phosphorus Sorption in Soils and Clay Fractions Developed from Different Parent Rocks in Limpopo Province, South Africa
Phosphorus (P) sorption dynamics in soils have implications for the environment and soil fertility. Soils and clay fractions that were developed from basalt, granite, arkosic sandstone, and gneiss in Limpopo Province, South Africa were analysed for their P adsorption characteristics and external phosphorus requirements (EPR). The relationship between the P adsorption parameters and EPR of the soils and clay fractions were also assessed. The Langmuir adsorption isotherms for the soils and clay fractions gave a better fit with slightly higher R-square values relative to the Freundlich adsorption isotherms. The Langmuir P sorption maxima were between 285.71 and 833.33 mg/kg and 238.09 and 625.0 mg/kg for the soils and clay fractions, respectively, and the EPR values ranged from 7.78 to 92.91 mgP/kg and 5.13 to 65.85 mgP/kg for the soils and clay fractions, respectively. The variations in the EPR suggest a single, uniform P fertiliser application to the soils could cause under-fertilisation and over-fertilisation problems. The soils that were developed from basalt, relative to the others, showed no risk to the water quality in the region at the current rate of P fertiliser application. The P sorption parameters of the soils and clay fractions showed no statistically significant differences. Hence, the P sorption parameters of the clay fractions could be reliable predictors of the P sorption and buffering in their respective soils.
Phosphorus Sorption in Soils and Clay Fractions Developed from Different Parent Rocks in Limpopo Province, South Africa
Omosalewa Oyebanjo (Autor:in) / Georges-Ivo Ekosse (Autor:in) / John Odiyo (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Geophagic practice in Mashau Village, Limpopo Province, South Africa
Elsevier | 2021
|Back analysis of an ancient rockslide at Lake Fundudzi, Limpopo Province, South Africa
Online Contents | 2017
|Taylor & Francis Verlag | 2021
|Taylor & Francis Verlag | 2023
|Examining the Expanded Public Works Programme in the Limpopo Province of South Africa
Springer Verlag | 2023
|