Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms
Nanoscale zero-valent iron (nZVI), although being increasingly used in anaerobic systems for strengthening the removal of various refractory pollutants, is limited by various inherent drawbacks, such as easy precipitation, passivation, poor mass and electron transfer. To address the above issues, biochar stabilized sulfide-modified nZVI (S-nZVI@BC) was added into an up-flow anaerobic sludge blanket (UASB) to investigate the enhancement of anaerobic biodegradation of nitrobenzene (NB) and its impacts on microbial community structure. The results demonstrated that both NB reduction and aniline formation could be substantially facilitated in S-nZVI@BC coupled system compared to other anaerobic ones coupled with nZVI or S-nZVI. The dosage of S-nZVI@BC resulted in the formation of densely packed aggregates, evidently increased the extracellular polymeric substances content, promoted the volatile fatty acids transformation and stimulated the methane yield. Furthermore, species related to fermentation (Bacteroides and Longilinea), methanogenesis (Methanosarcina and Methanomethylovorans), electroactivity (Pelobacter, Thiobacillus and Phaselicystis) as well as reduction (Desulfovibrio) were considerably enriched in S-nZVI@BC coupled system. The activities of electron transport, total adenosine triphosphate, nitroreductase and NAD(P)H, which were closely related to microbial activity and NB transformation, were increased noticeably in S-nZVI@BC coupled anaerobic system. This study demonstrated the promising potential for long-term operation and full-scale application of S-nZVI@BC coupled system for the treatment of NB containing wastewater. Keywords: Sulfide-modified nanoscale zero-valent iron (S-nZVI), Biochar, Anaerobic system, Microbial community, Nitrobenzene
Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms
Nanoscale zero-valent iron (nZVI), although being increasingly used in anaerobic systems for strengthening the removal of various refractory pollutants, is limited by various inherent drawbacks, such as easy precipitation, passivation, poor mass and electron transfer. To address the above issues, biochar stabilized sulfide-modified nZVI (S-nZVI@BC) was added into an up-flow anaerobic sludge blanket (UASB) to investigate the enhancement of anaerobic biodegradation of nitrobenzene (NB) and its impacts on microbial community structure. The results demonstrated that both NB reduction and aniline formation could be substantially facilitated in S-nZVI@BC coupled system compared to other anaerobic ones coupled with nZVI or S-nZVI. The dosage of S-nZVI@BC resulted in the formation of densely packed aggregates, evidently increased the extracellular polymeric substances content, promoted the volatile fatty acids transformation and stimulated the methane yield. Furthermore, species related to fermentation (Bacteroides and Longilinea), methanogenesis (Methanosarcina and Methanomethylovorans), electroactivity (Pelobacter, Thiobacillus and Phaselicystis) as well as reduction (Desulfovibrio) were considerably enriched in S-nZVI@BC coupled system. The activities of electron transport, total adenosine triphosphate, nitroreductase and NAD(P)H, which were closely related to microbial activity and NB transformation, were increased noticeably in S-nZVI@BC coupled anaerobic system. This study demonstrated the promising potential for long-term operation and full-scale application of S-nZVI@BC coupled system for the treatment of NB containing wastewater. Keywords: Sulfide-modified nanoscale zero-valent iron (S-nZVI), Biochar, Anaerobic system, Microbial community, Nitrobenzene
Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms
Dejin Zhang (Autor:in) / Jinyou Shen (Autor:in) / Hefei Shi (Autor:in) / Guanyong Su (Autor:in) / Xinbai Jiang (Autor:in) / Jiansheng Li (Autor:in) / Xiaodong Liu (Autor:in) / Yang Mu (Autor:in) / Lianjun Wang (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
Springer Verlag | 2019
|British Library Online Contents | 2011
|