Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Artificial Neural Network-Based Residential Energy Consumption Prediction Models Considering Residential Building Information and User Features in South Korea
When researching the energy consumption of residential buildings, it is becoming increasingly important to consider how residents use energy. With the advancement of computing power and data analysis techniques, it is now possible to analyze user information using big data techniques. Here, we endeavored to integrate user information with the physical characteristics of residential buildings to analyze how these elements impact energy consumption. Regression analysis was conducted to accurately identify the impact of each element on energy consumption. It was found that six elements were influential in all seasons: the number of exterior walls, housing direction, housing area, number of years occupied, number of household members, and the occupation of the household head. The elements that had an impact in each period were then derived. Based on the results of the regression analysis, input variables for the training of an artificial neural network (ANN) model were selected for each period, and residential energy consumption prediction models were implemented based on actual consumption. The elements identified as those affecting energy consumption, through regression analysis, can be used for implementing prediction models with advanced forms. This study is significant in that we derived influential elements from an integrative perspective.
Artificial Neural Network-Based Residential Energy Consumption Prediction Models Considering Residential Building Information and User Features in South Korea
When researching the energy consumption of residential buildings, it is becoming increasingly important to consider how residents use energy. With the advancement of computing power and data analysis techniques, it is now possible to analyze user information using big data techniques. Here, we endeavored to integrate user information with the physical characteristics of residential buildings to analyze how these elements impact energy consumption. Regression analysis was conducted to accurately identify the impact of each element on energy consumption. It was found that six elements were influential in all seasons: the number of exterior walls, housing direction, housing area, number of years occupied, number of household members, and the occupation of the household head. The elements that had an impact in each period were then derived. Based on the results of the regression analysis, input variables for the training of an artificial neural network (ANN) model were selected for each period, and residential energy consumption prediction models were implemented based on actual consumption. The elements identified as those affecting energy consumption, through regression analysis, can be used for implementing prediction models with advanced forms. This study is significant in that we derived influential elements from an integrative perspective.
Artificial Neural Network-Based Residential Energy Consumption Prediction Models Considering Residential Building Information and User Features in South Korea
Mansu Kim (Autor:in) / Sungwon Jung (Autor:in) / Joo-won Kang (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Residential Building Duration Prediction Based on Mean Clustering and Neural Network
DOAJ | 2024
|Simulation on Building Energy Consumption for a Residential Building
Trans Tech Publications | 2014
|Simulation on Building Energy Consumption for a Residential Building
Tema Archiv | 2014
|