Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Enhanced Optimization of Bioethanol Production from Palm Waste Using the Taguchi Method
In the present study, palm fiber (PF) and palm fronds (PFN) were selected as local agricultural wastes for the extraction of different biopolymers (cellulose, hemicelluloses, and lignin) by alkaline sodium hydroxide (PF, 2.37% NaOH at 86.5 °C for 1.6 h; PFN, 6% NaOH at 90 °C for 1 h) and bioethanol production. The processes of extraction were optimized by the experimental design method of Taguchi. The total carbohydrates of PF and PFN obtained were 24.4% and 31.0%, respectively. In addition, the untreated palm fiber (UPF), untreated palm frond (UPFN), cellulose palm fibers (CPF), and cellulose palm fronds (CPFN) were subjected to enzymatic hydrolysis processes using crude enzymes and commercial enzymes at 48 °C and pH 5.5. The results indicate that the maximum reducing sugars used were CPF 229.90, CPFN 243.69, UPF 120.19, and UPFN 100.00 (mg/g), which were obtained at a crude enzyme loading. CPF and CPFN hydrolysates were then successfully converted into bioethanol by a separate enzymatic hydrolysis and fermentation by Saccharomyces cerevisiae. Anaerobic cultivation of the hydrolysates with S.cerevisiae resulted in 0.222 g/g and 0.213 g/g bioethanol in the case of CPF and CPFN, respectively. Optimization processes could be an innovative approach to the sustainable development of bioethanol production.
Enhanced Optimization of Bioethanol Production from Palm Waste Using the Taguchi Method
In the present study, palm fiber (PF) and palm fronds (PFN) were selected as local agricultural wastes for the extraction of different biopolymers (cellulose, hemicelluloses, and lignin) by alkaline sodium hydroxide (PF, 2.37% NaOH at 86.5 °C for 1.6 h; PFN, 6% NaOH at 90 °C for 1 h) and bioethanol production. The processes of extraction were optimized by the experimental design method of Taguchi. The total carbohydrates of PF and PFN obtained were 24.4% and 31.0%, respectively. In addition, the untreated palm fiber (UPF), untreated palm frond (UPFN), cellulose palm fibers (CPF), and cellulose palm fronds (CPFN) were subjected to enzymatic hydrolysis processes using crude enzymes and commercial enzymes at 48 °C and pH 5.5. The results indicate that the maximum reducing sugars used were CPF 229.90, CPFN 243.69, UPF 120.19, and UPFN 100.00 (mg/g), which were obtained at a crude enzyme loading. CPF and CPFN hydrolysates were then successfully converted into bioethanol by a separate enzymatic hydrolysis and fermentation by Saccharomyces cerevisiae. Anaerobic cultivation of the hydrolysates with S.cerevisiae resulted in 0.222 g/g and 0.213 g/g bioethanol in the case of CPF and CPFN, respectively. Optimization processes could be an innovative approach to the sustainable development of bioethanol production.
Enhanced Optimization of Bioethanol Production from Palm Waste Using the Taguchi Method
Tamer I. M. Ragab (Autor:in) / Fahad M. Alminderej (Autor:in) / Wael A. El-Sayed (Autor:in) / Sayed M. Saleh (Autor:in) / Al Shimaa Gamal Shalaby (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2023
|Optimization of carbon fibre production using the Taguchi method
British Library Online Contents | 1995
|Bioethanol Production from Mulberry Molasses Waste with Ohmic-Assisted Hydrodistillation
Springer Verlag | 2024
|Piloting Bioethanol Production from Source-Separated Food Waste Boosts Technology Readiness
DOAJ | 2023
|