Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Decomplexation of Ni-EDTA by Three-Dimensional Electro-Fenton
Ni-ethylenediaminetetraacetic acid (Ni-EDTA) poses serious threats to the ecological environment and human health, due to its acute toxicity and low biodegradability. The decomplexation efficiency of Ni-EDTA through the conventional Fenton process has been constrained to pH; thus, other appropriate approaches are required to destroy the stable chelate structure at a neutral pH. In this study, the effect of operating parameters such as the pH, Fe2+ concentration, particle electrode dosage, current density, and coexisting ions was studied. The results revealed that the 3D-EF system owned advantages for the removal of Ni-EDTA in the broadening of the pH application window. The Ni-EDTA removal efficiency in the 3D-EF system reached 84.89% after 120 min at a pH of 7. In addition, the presence of coexisting ions slightly affected the decomplexation efficiency of Ni-EDTA.
Decomplexation of Ni-EDTA by Three-Dimensional Electro-Fenton
Ni-ethylenediaminetetraacetic acid (Ni-EDTA) poses serious threats to the ecological environment and human health, due to its acute toxicity and low biodegradability. The decomplexation efficiency of Ni-EDTA through the conventional Fenton process has been constrained to pH; thus, other appropriate approaches are required to destroy the stable chelate structure at a neutral pH. In this study, the effect of operating parameters such as the pH, Fe2+ concentration, particle electrode dosage, current density, and coexisting ions was studied. The results revealed that the 3D-EF system owned advantages for the removal of Ni-EDTA in the broadening of the pH application window. The Ni-EDTA removal efficiency in the 3D-EF system reached 84.89% after 120 min at a pH of 7. In addition, the presence of coexisting ions slightly affected the decomplexation efficiency of Ni-EDTA.
Decomplexation of Ni-EDTA by Three-Dimensional Electro-Fenton
Juan Peng (Autor:in) / Yameng Ma (Autor:in) / Xiao Huang (Autor:in) / Jianghua Yu (Autor:in) / Fengjiao Yu (Autor:in) / Jingsi Gao (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Application of Ferrate(VI) on the Decomplexation of Cu(II)-EDTA
British Library Online Contents | 2008
|