Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evaluation of IMERG and ERA5 Precipitation-Phase Partitioning on the Global Scale
The precipitation phase (i.e., rain and snow) is important for the global hydrologic cycle and climate system. The objective of this study is to evaluate the precipitation-phase partitioning capabilities of remote sensing and reanalysis modeling methods on the global scale. Specifically, observation data from the National Centers for Environmental Prediction (NCEP) Automated Data Processing (ADP), from 2000 to 2007, are used to evaluate the rain–snow discrimination accuracy of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) and the fifth-generation reanalysis product of the European Centre for Medium Range Weather Forecasts (ERA5). The results show that: (1) the ERA5 performs better than the IMERG at distinguishing rainfall and snowfall events, overall. (2) The ERA5 has high accuracy in all continents except for South America, while the IMERG performs well only in Antarctica and North America. (3) Compared with the IMERG, the ERA5 can more effectively capture snowfall events at high latitudes but shows worse performance at mid-low latitude regions. Both the IMERG and ERA5 have lower accuracy for rain–snow partitioning under heavy precipitation. Overall, the results of this study provide references for the application and improvement of global rain–snow partitioning products.
Evaluation of IMERG and ERA5 Precipitation-Phase Partitioning on the Global Scale
The precipitation phase (i.e., rain and snow) is important for the global hydrologic cycle and climate system. The objective of this study is to evaluate the precipitation-phase partitioning capabilities of remote sensing and reanalysis modeling methods on the global scale. Specifically, observation data from the National Centers for Environmental Prediction (NCEP) Automated Data Processing (ADP), from 2000 to 2007, are used to evaluate the rain–snow discrimination accuracy of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) and the fifth-generation reanalysis product of the European Centre for Medium Range Weather Forecasts (ERA5). The results show that: (1) the ERA5 performs better than the IMERG at distinguishing rainfall and snowfall events, overall. (2) The ERA5 has high accuracy in all continents except for South America, while the IMERG performs well only in Antarctica and North America. (3) Compared with the IMERG, the ERA5 can more effectively capture snowfall events at high latitudes but shows worse performance at mid-low latitude regions. Both the IMERG and ERA5 have lower accuracy for rain–snow partitioning under heavy precipitation. Overall, the results of this study provide references for the application and improvement of global rain–snow partitioning products.
Evaluation of IMERG and ERA5 Precipitation-Phase Partitioning on the Global Scale
Wentao Xiong (Autor:in) / Guoqiang Tang (Autor:in) / Tsechun Wang (Autor:in) / Ziqiang Ma (Autor:in) / Wei Wan (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Quasi-Global Evaluation of IMERG and GSMaP Precipitation Products over Land Using Gauge Observations
DOAJ | 2020
|Behavior of IMERG precipitation extremes with temperature at different spatial resolution
DOAJ | 2023
|Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5
DOAJ | 2021
|