Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm
With the improvement of industrialization, the importance of equipment failure prediction is increasing day by day. Accurate failure prediction of gas-insulated switchgear (GIS) in advance can reduce the economic loss caused by the failure of the power system to operate normally. Therefore, a GIS fault prediction approach based on Improved Particle Swarm Optimization Algorithm (IPSO)-least squares support vector machine (LSSVM) is proposed in this paper. Firstly, the future gas conditions of the GIS to determine the characteristic data of SF6 decomposition gas are analyzed; Secondly, a GIS fault prediction model based on LSSVM is established, and the IPSO algorithm is used to normalize the parameters LSSVM. The parameters of c and radial basis kernel function are optimized, which can meet the needs of later search accuracy while ensuring the global search capability in the early stage. Finally, the effectiveness of the proposed method is verified by the fault data of gas-insulated switch. Simulation results shows that, compared with the prediction methods based on IGA-LSSVM and PSO-LSSVM, the prediction accuracy rate of the proposed method reached 92.1%, which has the smallest prediction absolute error, higher accuracy and stronger prediction ability.
GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm
With the improvement of industrialization, the importance of equipment failure prediction is increasing day by day. Accurate failure prediction of gas-insulated switchgear (GIS) in advance can reduce the economic loss caused by the failure of the power system to operate normally. Therefore, a GIS fault prediction approach based on Improved Particle Swarm Optimization Algorithm (IPSO)-least squares support vector machine (LSSVM) is proposed in this paper. Firstly, the future gas conditions of the GIS to determine the characteristic data of SF6 decomposition gas are analyzed; Secondly, a GIS fault prediction model based on LSSVM is established, and the IPSO algorithm is used to normalize the parameters LSSVM. The parameters of c and radial basis kernel function are optimized, which can meet the needs of later search accuracy while ensuring the global search capability in the early stage. Finally, the effectiveness of the proposed method is verified by the fault data of gas-insulated switch. Simulation results shows that, compared with the prediction methods based on IGA-LSSVM and PSO-LSSVM, the prediction accuracy rate of the proposed method reached 92.1%, which has the smallest prediction absolute error, higher accuracy and stronger prediction ability.
GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm
Hengyang Zhao (Autor:in) / Guobao Zhang (Autor:in) / Xi Yang (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Dissolved Oxygen Prediction Model for the Yangtze River Estuary Basin Using IPSO-LSSVM
DOAJ | 2023
|Prediction of Slope Stability Based on Hybrid PSO and LSSVM
British Library Online Contents | 2017
|Prediction of Slope Stability Based on Hybrid PSO and LSSVM
Online Contents | 2017
|Prediction of Slope Stability Based on Hybrid PSO and LSSVM
Online Contents | 2016
|