Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability
Giant urban rail transit (GURT) systems have been formed in many metropolises and play a critical role in addressing serious traffic congestion. Unfortunately, as a dynamic and complex system, the vulnerability of GURT networks under various failure scenarios will be more prominent as the network expansion continues. Thus, it is imperative to explore the complex structural characteristics of the network and improve the ability to deal with the disturbance of emergencies. In this study, the destruction resistance of GURT networks with scale growth is illustrated from a vulnerability perspective. Specifically, taking Shanghai rail transit (SHRT) system as an example, the network topology model is constructed using the Space L method, and the network structure characteristics are analyzed based on the complex network theory. In addition, five attack strategies are developed to represent random and targeted attacks during the simulation of network failure, and two metrics are determined to evaluate the network vulnerability. Some meaningful results have been obtained: (i) The Shanghai rail transit planning network (SHRTPN) has increased the network efficiency by more than 10% over the Shanghai rail transit operating network (SHRTON) and has effectively enhanced the network destruction resistance. (ii) The SHRT network is a small-world network and shows significant vulnerability under the targeted attacks. The failure of only 3% high betweenness stations in SHRTON can lead to a 66.2% decrease in the network efficiency and a 75.8% decrease in the largest connected component (LCC) ratio. (iii) Attacking stations will cause more severe network failures than attacking edges, and it is necessary to focus on preventing catastrophic network failure caused by the critical station’s failure breaking the threshold. Finally, the strategies for improving the destruction resistance of GURT networks are proposed. The findings of this research can provide an essential reference for the rational planning, safety protection, and sustainable construction of GURT systems.
Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability
Giant urban rail transit (GURT) systems have been formed in many metropolises and play a critical role in addressing serious traffic congestion. Unfortunately, as a dynamic and complex system, the vulnerability of GURT networks under various failure scenarios will be more prominent as the network expansion continues. Thus, it is imperative to explore the complex structural characteristics of the network and improve the ability to deal with the disturbance of emergencies. In this study, the destruction resistance of GURT networks with scale growth is illustrated from a vulnerability perspective. Specifically, taking Shanghai rail transit (SHRT) system as an example, the network topology model is constructed using the Space L method, and the network structure characteristics are analyzed based on the complex network theory. In addition, five attack strategies are developed to represent random and targeted attacks during the simulation of network failure, and two metrics are determined to evaluate the network vulnerability. Some meaningful results have been obtained: (i) The Shanghai rail transit planning network (SHRTPN) has increased the network efficiency by more than 10% over the Shanghai rail transit operating network (SHRTON) and has effectively enhanced the network destruction resistance. (ii) The SHRT network is a small-world network and shows significant vulnerability under the targeted attacks. The failure of only 3% high betweenness stations in SHRTON can lead to a 66.2% decrease in the network efficiency and a 75.8% decrease in the largest connected component (LCC) ratio. (iii) Attacking stations will cause more severe network failures than attacking edges, and it is necessary to focus on preventing catastrophic network failure caused by the critical station’s failure breaking the threshold. Finally, the strategies for improving the destruction resistance of GURT networks are proposed. The findings of this research can provide an essential reference for the rational planning, safety protection, and sustainable construction of GURT systems.
Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability
Xueguo Xu (Autor:in) / Chen Xu (Autor:in) / Wenxin Zhang (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective
DOAJ | 2019
|Vulnerability Assessment of Urban Rail Transit Network—A Case Study of Chongqing
DOAJ | 2025
|Vulnerability Analysis of Urban Rail Transit Network within Multi-Modal Public Transport Networks
DOAJ | 2019
|Research on Hyperpaths in the Urban Rail Transit Network
British Library Conference Proceedings | 2014
|Vulnerability Assessments of Urban Rail Transit Networks Based on Redundant Recovery
DOAJ | 2020
|