Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Ecological Impact of American Chestnut Hybrid Restoration on Invertebrate Communities Above- and Belowground
The cross-hybridization of American chestnut (Castanea dentata (Marsh.) Borkh.) with Chinese chestnut (Castanea mollissima Bl.) is a promising strategy for restoring a blight-resistant strain of this keystone species to the Appalachian mountains. To assess the ecological impacts of hybridization on invertebrate communities, we conducted a study across chestnut plots with varying degrees of hybridization (75%, 94%, or 100% American chestnut). Our findings indicate American chestnut hybridization impacted invertebrate communities above- and belowground. Aboveground insect community composition, insect herbivory, gall infestation, and belowground invertebrate diversity were all altered. While some of these differences could be explained by different growth habits or environmental differences, stark differences in Asian chestnut gall wasp infestation (Dryocosmus kuriphilus Yasumatsu.) suggest a genetic component. These results suggest that chestnut hybridization, and particularly expanded restoration efforts using chestnut hybrids, could impact invertebrate communities above- and belowground in addition to pest dynamics. Understanding these effects is crucial for successful chestnut restoration and ecosystem management.
Ecological Impact of American Chestnut Hybrid Restoration on Invertebrate Communities Above- and Belowground
The cross-hybridization of American chestnut (Castanea dentata (Marsh.) Borkh.) with Chinese chestnut (Castanea mollissima Bl.) is a promising strategy for restoring a blight-resistant strain of this keystone species to the Appalachian mountains. To assess the ecological impacts of hybridization on invertebrate communities, we conducted a study across chestnut plots with varying degrees of hybridization (75%, 94%, or 100% American chestnut). Our findings indicate American chestnut hybridization impacted invertebrate communities above- and belowground. Aboveground insect community composition, insect herbivory, gall infestation, and belowground invertebrate diversity were all altered. While some of these differences could be explained by different growth habits or environmental differences, stark differences in Asian chestnut gall wasp infestation (Dryocosmus kuriphilus Yasumatsu.) suggest a genetic component. These results suggest that chestnut hybridization, and particularly expanded restoration efforts using chestnut hybrids, could impact invertebrate communities above- and belowground in addition to pest dynamics. Understanding these effects is crucial for successful chestnut restoration and ecosystem management.
Ecological Impact of American Chestnut Hybrid Restoration on Invertebrate Communities Above- and Belowground
Jaq Reed (Autor:in) / Evan Hausler (Autor:in) / Abigail Levinson (Autor:in) / Jonathan Horton (Autor:in) / Denis S. Willett (Autor:in) / Camila C. Filgueiras (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Predicting Pesticide Volatility Through Coupled Above- and Belowground Multiphysics Modeling
Springer Verlag | 2018
|Predicting Pesticide Volatility Through Coupled Above- and Belowground Multiphysics Modeling
Online Contents | 2018
|