Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Study of Panel Zone Behavior in Interior Beam–Column Joints with Reduced Beam Section (RBS)
Based on the post-earthquake investigation of the Beiling and Hanshen earthquakes, many welded rigid beam–column joints were found to exhibit brittle failure. The failure modes of the joint region and the overall steel frame structure under the action of the earthquake need to be studied. The seismic performance of different types of weakened beam-end interior joints was investigated. The finite element method was verified by high-strength steel beam–column joint tests conducted by our research team. Finite element modeling of weakened steel beam flanges and weakened steel beam web joints was carried out based on the validated finite element modeling method. The joints were studied and analyzed using seismic parameters such as joint stress clouds, equivalent story shear–inter-story displacement ratio curves, panel zone bending moment–shear ratio curves, ductility, stiffness, and energy dissipation. The results of this study showed that honeycomb open hole-type joints exhibit a better deformation and energy dissipation capacity compared to open circular web hole-type joints. However, their load carrying capacity is reduced, which is mainly due to the larger area of the web openings. Additionally, double reduced beam section (DRBS) joints exhibit superior seismic performance and plastic hinge outward movement characteristics compared to single reduced beam section (RBS) joints. It was also found that the deformation and energy dissipation of DRBS joints and steel beam honeycomb hole-type joints are mainly borne by the beams, with the panel zone’s participation in energy dissipation accounting for a smaller proportion of the energy.
Study of Panel Zone Behavior in Interior Beam–Column Joints with Reduced Beam Section (RBS)
Based on the post-earthquake investigation of the Beiling and Hanshen earthquakes, many welded rigid beam–column joints were found to exhibit brittle failure. The failure modes of the joint region and the overall steel frame structure under the action of the earthquake need to be studied. The seismic performance of different types of weakened beam-end interior joints was investigated. The finite element method was verified by high-strength steel beam–column joint tests conducted by our research team. Finite element modeling of weakened steel beam flanges and weakened steel beam web joints was carried out based on the validated finite element modeling method. The joints were studied and analyzed using seismic parameters such as joint stress clouds, equivalent story shear–inter-story displacement ratio curves, panel zone bending moment–shear ratio curves, ductility, stiffness, and energy dissipation. The results of this study showed that honeycomb open hole-type joints exhibit a better deformation and energy dissipation capacity compared to open circular web hole-type joints. However, their load carrying capacity is reduced, which is mainly due to the larger area of the web openings. Additionally, double reduced beam section (DRBS) joints exhibit superior seismic performance and plastic hinge outward movement characteristics compared to single reduced beam section (RBS) joints. It was also found that the deformation and energy dissipation of DRBS joints and steel beam honeycomb hole-type joints are mainly borne by the beams, with the panel zone’s participation in energy dissipation accounting for a smaller proportion of the energy.
Study of Panel Zone Behavior in Interior Beam–Column Joints with Reduced Beam Section (RBS)
Ke-Jia Yang (Autor:in) / Yang Yang (Autor:in) / Heng Ye (Autor:in) / Wei Li (Autor:in) / Zhao-Yu Yang (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Seismic responses of steel reduced beam section to weak panel zone moment joints
British Library Conference Proceedings | 2000
|Interior Beam-Column Joints in Sway Frames
British Library Conference Proceedings | 1999
|Seismic Behavior of Reinforced Concrete Interior Wide-Beam Column Joints
Online Contents | 2009
|Seismic Behavior of Reinforced Concrete Interior Wide-Beam Column Joints
Online Contents | 2008
|Cyclic behavior of HPFRC-repaired reinforced concrete interior beam-column joints
Springer Verlag | 2002
|