Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Pennisetum sinese: A Potential Phytoremediation Plant for Chromium Deletion from Soil
Chromium is one of the major pollutants in water and soil. Thus, it is urgent to develop a new method for chromium removal from the environment. Phytoremediation is a promising approach for heavy metal pollution recovery. As a perennial giant grass with a fast growth rate, Pennisetum sinese has been widely used as livestock feed, mushroom culture medium and biomass energy raw material. Interestingly, we have found a high adsorption capacity of P. sinese for chromium. P. sinese was treated with different concentrations of chromium for 15 days. Results showed that P. sinese plantlets grew well under low concentrations (less than 500 μM) of chromium (VI). The plantlet growth was inhibited when treated with high concentrations of chromium (more than 1000 μM). Up to 150.99 and 979.03 mg·kg−1 DW of chromium accumulated in the aerial part and root, respectively, under a treatment of 2000 μM Cr. The bioaccumulation factor (BCF) of P. sinese varied from 10.87 to 17.56, and reached a maximum value at the concentration of 500 μM. The results indicated that P. sinese showed strong tolerance and high accumulation capability under Cr stress. Therefore, the chromium removal potential of P. sinese has a great application prospect in phytoremediation.
Pennisetum sinese: A Potential Phytoremediation Plant for Chromium Deletion from Soil
Chromium is one of the major pollutants in water and soil. Thus, it is urgent to develop a new method for chromium removal from the environment. Phytoremediation is a promising approach for heavy metal pollution recovery. As a perennial giant grass with a fast growth rate, Pennisetum sinese has been widely used as livestock feed, mushroom culture medium and biomass energy raw material. Interestingly, we have found a high adsorption capacity of P. sinese for chromium. P. sinese was treated with different concentrations of chromium for 15 days. Results showed that P. sinese plantlets grew well under low concentrations (less than 500 μM) of chromium (VI). The plantlet growth was inhibited when treated with high concentrations of chromium (more than 1000 μM). Up to 150.99 and 979.03 mg·kg−1 DW of chromium accumulated in the aerial part and root, respectively, under a treatment of 2000 μM Cr. The bioaccumulation factor (BCF) of P. sinese varied from 10.87 to 17.56, and reached a maximum value at the concentration of 500 μM. The results indicated that P. sinese showed strong tolerance and high accumulation capability under Cr stress. Therefore, the chromium removal potential of P. sinese has a great application prospect in phytoremediation.
Pennisetum sinese: A Potential Phytoremediation Plant for Chromium Deletion from Soil
Xiaofei Chen (Autor:in) / Jianhua Tong (Autor:in) / Yi Su (Autor:in) / Langtao Xiao (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2002
|Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil
DOAJ | 2021
|Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil
DOAJ | 2023
|Pennisetum Hydridum’s Potential for Controlling Invasive Chromolaena Odorata
DOAJ | 2019
|