Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China
Arsenic (As) and cadmium (Cd) pose great risk to rice plants and human health. Copper (Cu) agrichemicals also draw increasing attention. This study investigated the distributions of As, Cd and Cu in the soil–rice system in two major rice-producing provinces, Hunan and Jiangxi, China. Arsenic in soils at site A in Hunan reached 47.95–60.25 mg/kg, all exceeding the national standard (GB15618-2018), but As in rice was all below the safe limit for humans (0.20 mg/kg, GB2762-2017). In contrast, As in all rice husks and 5% of grain samples from Jiangxi exceeded the safe limit, while As in soils was 3.40–9.92 mg/kg, all below the standard. Cadmium in soils at site A and site B in Hunan were 3.96–5.11 and 1.83–2.77 mg/kg, respectively, all exceeding the national standard; Cd in 60% of rice grains exceeded the safe limit (0.20 mg/kg, GB2762-2017). Despite Cd in soils from Jiangxi being much lower (0.20–0.34 mg/kg), Cd in 56% of the rice grains exceeded the safe limit. The different distribution patterns of As and Cd in the soil–rice system probably result from the dynamic environmental conditions during farming practice. Risk from dietary products made from rice husks should also be considered. Although not regulated in rice, Cu in the soil from Hunan exceeds the national standard. This study helps to understand As and Cd pollution in paddies and its risk to human health, and suggests limiting the application of Cu-based agrichemicals.
A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China
Arsenic (As) and cadmium (Cd) pose great risk to rice plants and human health. Copper (Cu) agrichemicals also draw increasing attention. This study investigated the distributions of As, Cd and Cu in the soil–rice system in two major rice-producing provinces, Hunan and Jiangxi, China. Arsenic in soils at site A in Hunan reached 47.95–60.25 mg/kg, all exceeding the national standard (GB15618-2018), but As in rice was all below the safe limit for humans (0.20 mg/kg, GB2762-2017). In contrast, As in all rice husks and 5% of grain samples from Jiangxi exceeded the safe limit, while As in soils was 3.40–9.92 mg/kg, all below the standard. Cadmium in soils at site A and site B in Hunan were 3.96–5.11 and 1.83–2.77 mg/kg, respectively, all exceeding the national standard; Cd in 60% of rice grains exceeded the safe limit (0.20 mg/kg, GB2762-2017). Despite Cd in soils from Jiangxi being much lower (0.20–0.34 mg/kg), Cd in 56% of the rice grains exceeded the safe limit. The different distribution patterns of As and Cd in the soil–rice system probably result from the dynamic environmental conditions during farming practice. Risk from dietary products made from rice husks should also be considered. Although not regulated in rice, Cu in the soil from Hunan exceeds the national standard. This study helps to understand As and Cd pollution in paddies and its risk to human health, and suggests limiting the application of Cu-based agrichemicals.
A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China
Jing Liu (Autor:in) / Jiayi Su (Autor:in) / Jun Wang (Autor:in) / Xu Song (Autor:in) / Haiwen Wang (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Rice Paddy Inventory in a Few Provinces of China Using AVHRR Data
Online Contents | 1994
|Rice Paddy Inventory in a Few Provinces of China Using AVHRR Data
Online Contents | 1995
|Cadmium-Contaminated Rice Redux
British Library Conference Proceedings | 2000
|Modeling Movement of Rice Commodities Between Provinces in Indonesia
Springer Verlag | 2022
|