Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effect of yttrium addition on structural, mechanical and thermodynamic properties of tungsten-yttrium alloys
Based on the supercell structures of bcc-W, the effect of yttrium on the structural, mechanical, and thermodynamic properties of tungsten-yttrium alloys is investigated using first-principles calculations. In this study, five new models of tungsten-yttrium alloys are constructed, namely W15Y1, W14Y2, W12Y4, W10Y6, and W8Y8. The obtained values of elastic constants and mechanical criteria show that these alloys are mechanically stable. The mechanical parameters, including elastic moduli (bulk modulus, shear modulus, and Young’s modulus), Poisson’s ratio, B/G ratio, Cauchy pressure, and Vickers hardness, indicate a decrease of the mechanical properties compared to pure tungsten, though significant improvements in plasticity and ductility are observed. According to the phonon spectrum, the calculated thermodynamic parameters, such as heat capacity, entropy, and enthalpy of the alloys increase with increasing yttrium content and temperature compared to those of pure tungsten. Despite a decrease in Debye temperature, thermal conductivity and melting point with rising yttrium content, the thermal expansion coefficient shows an increasing trend. These findings provide valuable insights into the potential of tungsten-yttrium alloys for advanced applications, particularly in the context of fusion materials.
Effect of yttrium addition on structural, mechanical and thermodynamic properties of tungsten-yttrium alloys
Based on the supercell structures of bcc-W, the effect of yttrium on the structural, mechanical, and thermodynamic properties of tungsten-yttrium alloys is investigated using first-principles calculations. In this study, five new models of tungsten-yttrium alloys are constructed, namely W15Y1, W14Y2, W12Y4, W10Y6, and W8Y8. The obtained values of elastic constants and mechanical criteria show that these alloys are mechanically stable. The mechanical parameters, including elastic moduli (bulk modulus, shear modulus, and Young’s modulus), Poisson’s ratio, B/G ratio, Cauchy pressure, and Vickers hardness, indicate a decrease of the mechanical properties compared to pure tungsten, though significant improvements in plasticity and ductility are observed. According to the phonon spectrum, the calculated thermodynamic parameters, such as heat capacity, entropy, and enthalpy of the alloys increase with increasing yttrium content and temperature compared to those of pure tungsten. Despite a decrease in Debye temperature, thermal conductivity and melting point with rising yttrium content, the thermal expansion coefficient shows an increasing trend. These findings provide valuable insights into the potential of tungsten-yttrium alloys for advanced applications, particularly in the context of fusion materials.
Effect of yttrium addition on structural, mechanical and thermodynamic properties of tungsten-yttrium alloys
Sabahattin Akbas (Autor:in) / Mustafa Kemal Ozturk (Autor:in) / Fatih Aydogan (Autor:in)
2025
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Elsevier | 2025
|Microstructure and Mechanical Properties of Mg-Al-Ca Alloys with Yttrium Addition
British Library Online Contents | 2007
|Fine-Grained Tungsten Heavy Alloy by Mechanical Alloying with Yttrium Oxide Addition
British Library Online Contents | 2007
|Fine-Grained Tungsten Heavy Alloy by Mechanical Alloying with Yttrium Oxide Addition
British Library Online Contents | 2007
|Thermodynamic evaluation of yttrium
British Library Online Contents | 1995
|