Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change
Sustainable conservation aims to ensure the sustained conservation of landscape multi-functionality which in turn requires ensuring ecosystem service (ES) and habitat quality (HQ) sustainability with inclusive landscape-scale conservation planning. This study proposes a landscape conservation planning (LCP) framework for landscape-scale ES-HQ conservation and sustainability. Spatially explicit hotspots for five ESs and HQs are identified via InVEST and LISA software. Spatiotemporal changes in ES-HQ hotspots, in terms of stability and resilience, are delineated. The Zonation technique is applied to prioritize areas for conservation based on ES-HQ hotspot stability and resilience maps. High priority conservation areas are identified and are used as reserve area inputs for land use modeling with CLUE-S software to simulate future land use change under climate change scenarios. This study reports that varied rainfall and climate are major driving factors of ES-HQ sustainability disturbance in the study area. Furthermore, our proposed conservation Strategy 2 demonstrates that a larger extent of landscape multi-functionality can be sustained when the existing conservation area includes the total area of identified ES-HQ resilient hotspots. This study effectively identifies the stability and resiliency of ES-HQ hotspot areas affected by disturbances for high priority landscape conservation requirements to ensure ES-HQ sustainability and landscape multi-functionality in the study area.
Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change
Sustainable conservation aims to ensure the sustained conservation of landscape multi-functionality which in turn requires ensuring ecosystem service (ES) and habitat quality (HQ) sustainability with inclusive landscape-scale conservation planning. This study proposes a landscape conservation planning (LCP) framework for landscape-scale ES-HQ conservation and sustainability. Spatially explicit hotspots for five ESs and HQs are identified via InVEST and LISA software. Spatiotemporal changes in ES-HQ hotspots, in terms of stability and resilience, are delineated. The Zonation technique is applied to prioritize areas for conservation based on ES-HQ hotspot stability and resilience maps. High priority conservation areas are identified and are used as reserve area inputs for land use modeling with CLUE-S software to simulate future land use change under climate change scenarios. This study reports that varied rainfall and climate are major driving factors of ES-HQ sustainability disturbance in the study area. Furthermore, our proposed conservation Strategy 2 demonstrates that a larger extent of landscape multi-functionality can be sustained when the existing conservation area includes the total area of identified ES-HQ resilient hotspots. This study effectively identifies the stability and resiliency of ES-HQ hotspot areas affected by disturbances for high priority landscape conservation requirements to ensure ES-HQ sustainability and landscape multi-functionality in the study area.
Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change
Yu-Pin Lin (Autor:in) / Chi-Ju Chen (Autor:in) / Wan-Yu Lien (Autor:in) / Wen-Hao Chang (Autor:in) / Joy R. Petway (Autor:in) / Li-Chi Chiang (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0