Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Estimation of the Potential for Soil and Water Conservation Measures in a Typical Basin of the Loess Plateau, China
Abstract: In the context of the large-scale management of the Loess Plateau and efforts to reduce water and sediment in the Yellow River, this study focuses on a typical watershed within the Loess Plateau. The potential for vegetation restoration in the Kuye River Basin is estimated based on the assumption that vegetation cover should be relatively uniform under similar habitat conditions. The potential for terrace restoration is assessed through an analysis of topographic features and soil layer thickness, while the potential for silt dam construction is evaluated by considering various hydrological and geomorphological factors. Based on these assessments, the overall potential for soil erosion control in the watershed is synthesized, providing a comprehensive understanding of target areas for ecological restoration within the Kuye River Basin. The study demonstrates that the areas with the greatest potential for vegetation restoration in the Kuye River Basin are concentrated in the upper and middle reaches of the basin, which are in closer proximity to the river. The total potential for terracing is 1013.85 km2, which is primarily distributed across the river terraces, farmlands, and gentle slopes on both sides of the riverbanks. Additionally, the potential for the construction of check dams is 14,390 units. The target areas for terracing measures in the Kuye River Basin are primarily situated in the middle and lower reaches of the basin, which are in closer proximity to the river. Conversely, the target areas for forest, grass, and check dams, as well as other small watershed integrated management measures, are predominantly located in the hill and gully areas on the eastern and southern sides of the basin. The implementation of the gradual ecological construction of the watershed, based on the aforementioned objectives, will facilitate the protection, improvement, and rational utilization of soil, water, and other natural resources within the watershed.
Estimation of the Potential for Soil and Water Conservation Measures in a Typical Basin of the Loess Plateau, China
Abstract: In the context of the large-scale management of the Loess Plateau and efforts to reduce water and sediment in the Yellow River, this study focuses on a typical watershed within the Loess Plateau. The potential for vegetation restoration in the Kuye River Basin is estimated based on the assumption that vegetation cover should be relatively uniform under similar habitat conditions. The potential for terrace restoration is assessed through an analysis of topographic features and soil layer thickness, while the potential for silt dam construction is evaluated by considering various hydrological and geomorphological factors. Based on these assessments, the overall potential for soil erosion control in the watershed is synthesized, providing a comprehensive understanding of target areas for ecological restoration within the Kuye River Basin. The study demonstrates that the areas with the greatest potential for vegetation restoration in the Kuye River Basin are concentrated in the upper and middle reaches of the basin, which are in closer proximity to the river. The total potential for terracing is 1013.85 km2, which is primarily distributed across the river terraces, farmlands, and gentle slopes on both sides of the riverbanks. Additionally, the potential for the construction of check dams is 14,390 units. The target areas for terracing measures in the Kuye River Basin are primarily situated in the middle and lower reaches of the basin, which are in closer proximity to the river. Conversely, the target areas for forest, grass, and check dams, as well as other small watershed integrated management measures, are predominantly located in the hill and gully areas on the eastern and southern sides of the basin. The implementation of the gradual ecological construction of the watershed, based on the aforementioned objectives, will facilitate the protection, improvement, and rational utilization of soil, water, and other natural resources within the watershed.
Estimation of the Potential for Soil and Water Conservation Measures in a Typical Basin of the Loess Plateau, China
Beilei Liu (Autor:in) / Peng Li (Autor:in) / Zhanbin Li (Autor:in) / Jianye Ma (Autor:in) / Zeyu Zhang (Autor:in) / Bo Wang (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Runoff–Sediment Simulation of Typical Small Watershed in Loess Plateau of China
DOAJ | 2023
|Land Conservation Practices Induced by Soil Loss Simulation with GIS in Loess Plateau, China
British Library Conference Proceedings | 1996
|Land Conservation Practices Induced by Soil Loss Simulation with GIS in Loess Plateau, China
British Library Online Contents | 1996
|