Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An experimental and numerical study on vascular self-healing cementitious materials
This paper gives an overview of a combined experimental-numerical study on vascular self-healing (SH) systems for cementitious composite materials. The work aimed to bridge the gap between numerical and experimental investigations for this type of SH system and to provide a set of data for developing, calibrating and validating a finite element model for these materials. The study investigated both healing-agent transport and mechanical damage-healing processes, including healing-agent curing. The experimental programme included mechanical tests on notched concrete beams and compact direct-tension specimens with inbuilt vascular healing systems, as well as tests to measure the transport properties of healing-agent within discrete concrete cracks and through the concrete matrix. The new coupled model employs elements with embedded strong discontinuities to simulate cracks and mechanical healing behaviour. A damage-healing constitutive model is described that simulates multiple damage-healing ‘events’. This mechanical model is coupled to discrete and continuum flow models that simulate healing-agent transport. The transport model accounts for pressurised and capillary flow, as well as curing-dependent flow properties. The main focus of this contribution is to show how these parallel programmes of work were combined so that the experimental observations guided the numerical developments and modelling questions were answered using experimental findings.
An experimental and numerical study on vascular self-healing cementitious materials
This paper gives an overview of a combined experimental-numerical study on vascular self-healing (SH) systems for cementitious composite materials. The work aimed to bridge the gap between numerical and experimental investigations for this type of SH system and to provide a set of data for developing, calibrating and validating a finite element model for these materials. The study investigated both healing-agent transport and mechanical damage-healing processes, including healing-agent curing. The experimental programme included mechanical tests on notched concrete beams and compact direct-tension specimens with inbuilt vascular healing systems, as well as tests to measure the transport properties of healing-agent within discrete concrete cracks and through the concrete matrix. The new coupled model employs elements with embedded strong discontinuities to simulate cracks and mechanical healing behaviour. A damage-healing constitutive model is described that simulates multiple damage-healing ‘events’. This mechanical model is coupled to discrete and continuum flow models that simulate healing-agent transport. The transport model accounts for pressurised and capillary flow, as well as curing-dependent flow properties. The main focus of this contribution is to show how these parallel programmes of work were combined so that the experimental observations guided the numerical developments and modelling questions were answered using experimental findings.
An experimental and numerical study on vascular self-healing cementitious materials
Jefferson Anthony (Autor:in) / Selvarajoo Tharmesh (Autor:in) / Freeman Brubeck (Autor:in) / Davies Robert (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Numerical Simulation of Self-Healing Cementitious Materials
Springer Verlag | 2021
|British Library Online Contents | 2017
|British Library Online Contents | 2017
|