Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Performance Assessment of Concrete Using Discarded Membrane Filter Materials
Currently, membrane filters, which need to be replaced regularly as they get worn, are used in filtration facilities globally. The old membrane filters and housings become continuous industrial waste and are currently 100% incinerated. To solve this environmental problem, this study proposes the development of an eco-friendly concrete by mixing waste membrane resources with concrete. Through this, the environmental pollution and wastage of resources due to incineration, and the enormous amount of carbon dioxide generated during cement production, can be decreased by reducing the cement required when mixing concrete. To this end, the membrane module outer surface (acrylic butadiene styrene, ABS) and inner membrane (poly vinylidene fluoride, PVDF) were extracted from the waste membrane system and pulverized. Different mix ratios of 1%, 3%, and 5% for replacing cement were used when mixing concrete. The test specimens were then tested and compared with the reference concrete (ordinary Portland cement) specimen. It was confirmed that the compressive strength was high after 28 days in all the specimens to which ABS was added at 1%, 3%, and 5% mix ratios. Therefore, the possibility of technological development of eco-friendly concrete using waste resources from membrane filtration facilities was verified.
Performance Assessment of Concrete Using Discarded Membrane Filter Materials
Currently, membrane filters, which need to be replaced regularly as they get worn, are used in filtration facilities globally. The old membrane filters and housings become continuous industrial waste and are currently 100% incinerated. To solve this environmental problem, this study proposes the development of an eco-friendly concrete by mixing waste membrane resources with concrete. Through this, the environmental pollution and wastage of resources due to incineration, and the enormous amount of carbon dioxide generated during cement production, can be decreased by reducing the cement required when mixing concrete. To this end, the membrane module outer surface (acrylic butadiene styrene, ABS) and inner membrane (poly vinylidene fluoride, PVDF) were extracted from the waste membrane system and pulverized. Different mix ratios of 1%, 3%, and 5% for replacing cement were used when mixing concrete. The test specimens were then tested and compared with the reference concrete (ordinary Portland cement) specimen. It was confirmed that the compressive strength was high after 28 days in all the specimens to which ABS was added at 1%, 3%, and 5% mix ratios. Therefore, the possibility of technological development of eco-friendly concrete using waste resources from membrane filtration facilities was verified.
Performance Assessment of Concrete Using Discarded Membrane Filter Materials
Sehwan Park (Autor:in) / Junkyeong Kim (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Assessment of Dispersion Potential of Discarded Coconut Fibres in Concrete Pavements
Springer Verlag | 2023
|British Library Conference Proceedings | 1999
|CONCRETE SCREED WITH RECYCLED RUBBER FROM DISCARDED TYRES
Europäisches Patentamt | 2021
|Concrete screed with recycled rubber from discarded tyres
Europäisches Patentamt | 2016
|Properties of Concrete Containing Rubber Aggregate Derived From Discarded Tires
BASE | 2017
|